PRESSURE EFFECT ON THE INTERFACE EXCITONS IN A TYPE-II ZnTe/CdSe HETEROJUNCTION

2003 ◽  
Vol 17 (27n28) ◽  
pp. 1425-1435 ◽  
Author(s):  
Z. Z. GUO ◽  
X. X. LIANG ◽  
S. L. BAN

A variational method is used to study the ground-state binding energies of interface light-hole excitons in ZnTe/CdSe type-II heterojunctions under the influence of hydrostatic pressure. The finite triangle potential well approximation is introduced considering the band bending near the interface. The asymptotic transfer method is adopted to obtain the sub-band energies and wave functions of the electrons and light holes. The pressure influence on the band offsets, the effective masses and the dielectric constant are considered in the calculation. The obvious pressure-induced increase of the exciton binding energy is demonstrated and the influences of the pressure-depended parameters on the binding energy are compared.

The r. m. s. radius and the binding energy of oxygen 16 are calculated for several different internueleon potentials. These potentials all fit the low-energy data for two nucleons, they have hard cores of differing radii, and they include the Gammel-Thaler potential (core radius 0·4 fermi). The calculated r. m. s. radii range from 1·5 f for a potential with core radius 0·2 f to 2·0 f for a core radius 0·6 f. The value obtained from electron scattering experiments is 2·65 f. The calculated binding energies range from 256 MeV for a core radius 0·2 f to 118 MeV for core 0·5 f. The experimental value of binding energy is 127·3 MeV. The 25% discrepancy in the calculated r. m. s. radius may be due to the limitations of harmonic oscillator wave functions used in the unperturbed system.


Author(s):  
A. H. Wilson

The wave equation for the deuteron in its ground state is solved on the assumption that the mutual potential energy of a neutron and a proton is of the form r−1e−λr. The binding energy of the hydrogen isotope H3 is calculated approximately by the variation method.


2016 ◽  
Vol 31 (14) ◽  
pp. 1650084 ◽  
Author(s):  
A. Armat ◽  
H. Hassanabadi

In this work, the ground state binding energy of [Formula: see text]-particle in hypernuclei is investigated by using analytical solution of non-relativistic Schrödinger equation in the presence of a generalized Woods–Saxon-type interaction. The comparison with the experimental data is motivating.


1969 ◽  
Vol 47 (24) ◽  
pp. 2825-2834 ◽  
Author(s):  
J. Law ◽  
R. K. Bhaduri

We have calculated the binding energies of 4He and 3H with soft- and hard-core nucleon–nucleon potentials. With central forces, using harmonic-oscillator wave functions, we find that accurate results can be obtained by taking only the long-range part of the potential and its second-order perturbative term. When tensor forces are present, the long-range interference term is also included in the calculation. In this case, the method is not accurate and underbinds these nuclei by about 1 MeV per particle. Ignoring Coulomb forces, our method yields a value of 18.5 MeV for the binding energy of 4He with the Hamada–Johnston potential.


2021 ◽  
Author(s):  
Bruno Nunes Cabral Tenorio ◽  
Piero Decleva ◽  
Sonia Coriani

Double-Core Hole (DCH) states of small molecules are assessed with the restricted<br>active space self-consistent field (RASSCF) and multi-state restricted active space perturbation<br>theory of second order (MS-RASPT2) approximations. To ensure an unbiased<br>description of the relaxation and correlation effects on the DCH states, the neutral<br>ground state and DCH wave functions are optimized separately, whereas the spectral<br>intensities are computed with a biorthonormalized set of molecular orbitals within the<br>state-interaction (SI) approximation. Accurate shake-up satellites binding energies and<br>intensities of double-core-ionized states (K<sup>-2</sup>) are obtained for H<sub>2</sub>O, N<sub>2</sub>, CO and C<sub>2</sub>H<sub>2n</sub><br>(n=1–3). The results are analyzed in details and show excellent agreement with recent<br>experimental data.


2007 ◽  
Vol 21 (16) ◽  
pp. 2735-2747 ◽  
Author(s):  
G. J. ZHAO ◽  
X. X. LIANG ◽  
S. L. BAN

The binding energies of excitons in finite barrier quantum wells under hydrostatic pressure are calculated by a variational method. The influences of hydrostatic pressure on the effective masses of the electron and hole, the dielectric constant, and the conduction band offset between the well and barriers are taken into account in the calculation. The numerical results for the GaAs/Al x Ga 1-x As and GaN/Al x Ga 1-x N quantum wells are given respectively. It is shown that the exciton binding energy increases linearly with the pressure and the pressure effect on arsenide quantum wells is more obvious than that on nitride ones. The exciton binding energies monotonically increase with increasing barrier height, which is related to the Al concentration of the barriers and the influence of the pressure.


A technique for calculating the binding energy of any saturated molecule is developed.The method is based on an application of the electrostatic theorem, discussed in earlier parts, to paired-electron orbital wave functions.These wave functions include both molecular-orbital and valence-bond functions as special cases.The resulting numerical computations are sufficiently simple to be carried through without approximation even for complex molecules. The method is applied to the lithium molecule and the lithium hydride molecule, and yields results in good agreement with experiment. The choice of wave functions for calculations on other molecules is discussed.


The variation method is employed to calculate the binding energy of the triton assuming charge-independent, two-body, Yukawa shape interactions between nucleons in which tensor forces are included. More complete trial wave functions are used than employed hitherto in such calculations, and it is found that an interaction of Yukawa shape with constants adjusted to fit the observed data on the binding energy, quadrupole moment and magnetic moment of the deuteron, the low-energy and high-energy scattering of neutrons by protons, the photodisintegration of the deuteron and the coherent scattering of slow neutrons gives an approximately correct binding energy for the triton. Calculations are also carried out with interactions of the same type but with different constants. The exchange character of the forces remains unimportant. It is confirmed that the difference in the binding energies of 3 H and 3 He can be ascribed to the effect of Coulomb repulsion between the protons in the latter nucleus. The wave functions found are used to compute the magnetic moments of the two nuclei but do not contain sufficient admixture of P component to explain the observed values.


2011 ◽  
Vol 20 (01) ◽  
pp. 179-190 ◽  
Author(s):  
G. GANGOPADHYAY

A phenomenological formula based on liquid drop model has been proposed for ground-state binding energies of nuclei. The effect due to bunching of single particle levels has been incorporated through a term resembling the one-body Hamiltonian. The effect of n–p interaction has been included through a function of valence nucleons. A total of 50 parameters has been used in the present calculation. The root mean square (r.m.s.) deviation for the binding energy values for 2140 nuclei comes out to be 0.376 MeV, and that for 1091 alpha decay energies is 0.284 MeV. The correspondence with the conventional liquid drop model is discussed.


1961 ◽  
Vol 14 (2) ◽  
pp. 313 ◽  
Author(s):  
JW Olley

The form of the dependence of the binding energy of the A-particle in hypernuclei on the mass number .A is of interest in obtaining empirical information about the hyperon-nucleon interaction. As an introductory calculation we considered the simple model in which the total A-nucleon interaction is replaced by a potential well V(r) in which the A moves and in which the only �effect of varying .A is to vary the radius but not the depth of the well. The binding energy of the A, B A' is then given by the ground state energy of a particle in this well. The aim of our calculations was to determine whether the present experimental values of B A defined a unique well sbape.


Sign in / Sign up

Export Citation Format

Share Document