A CRYSTAL STRUCTURE STUDY OF La1-xCaxMnO3 NANOPARTICLES

2004 ◽  
Vol 18 (12n13) ◽  
pp. 597-602 ◽  
Author(s):  
YINGWEN DUAN ◽  
JIANGONG LI

Using a sol-gel method, La 1-x Ca x MnO 3(0≤x≤0.5) nanoparticles with nearly the same average grain size of about 21 nm and different Ca contents, La 0.8 Ca 0.2 MnO 3 nanoparticles with various average grain sizes were prepared. Crystal structure was investigated by X-ray diffraction. Increasing Ca content and decreasing grain size can lead to the average Mn–O bond lengths decrease and Mn–O–Mn bond angles increase. The crystal symmetry changes from orthorhombic to cubic as x≥0.3 for the La 1-x Ca x MnO 3(0≤x≤0.5) nanoparticles with nearly the same average grain size and D~16 nm for the La 0.8 Ca 0.2 MnO 3 nanoparticles with various grain sizes. Small-size effect and surface effect may be the reasons of the lattice distortion and structure transition.

2008 ◽  
Vol 1122 ◽  
Author(s):  
Gianguido Baldinozzi ◽  
David Simeone ◽  
Dominique Gosset ◽  
Mickael Dollé ◽  
Georgette Petot-Ervas

AbstractWe have synthesized Gd-doped ceria polycrystalline samples (5, 10, 15 %mol), having relative densities exceeding 95% and grain sizes between 30 and 160 nm after axial hot pressing (750 °C, 250 MPa). The samples were prepared by sintering nanopowders obtained by sol-gel chemistry methods having a very narrow size distribution centered at about 16 nm. SEM and X-ray diffraction were performed to characterize the sample microstructures and to assess their structures. We report ionic conductivity measurements using impedance spectroscopy. It is important to investigate the properties of these systems with sub-micrometric grains and as a function of their composition. Therefore, samples having micrometric and nanometric grain sizes (and different Gd content) were studied. Evidence of Gd segregation near the grain boundaries is given and the impact on the ionic conductivity, as a function of the grain size and Gd composition, is discussed and compared to microcrystalline samples.


2001 ◽  
Vol 672 ◽  
Author(s):  
Kathleen A. Dunn ◽  
Katharine Dovidenko ◽  
Anna W. Topol ◽  
Serge R. Oktyabrsky ◽  
Alain E. Kaloyeros

ABSTRACTZinc sulfide doped with manganese is extensively used for thin film electroluminescent device applications. In order to assess the key material and process challenges, ZnS:Mn layers were fabricated by metalorganic chemical vapor deposition in the 250°-500°C range on an AlTiO/InSnO/glass stack. The microstructure of the ZnS:Mn films was examined by Transmission Electron Microscopy (TEM) as part of a larger study which fully characterizes these films by a variety of structural and chemical characterization techniques, including Rutherford Backscattering, Secondary Ion Mass Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and X-ray Diffraction. For all the growth conditions, the films were found to be polycrystalline having predominantly 2H hexagonal ZnS structure. The ZnS grains are found to grow columnar as the film thickness increases, also widening in the direction parallel to the substrate surface and reaching the 100 - 200 nm average lateral size at the 650 nm film thickness. The presence of the 8H ZnS polytype was detected in the low-temperature ZnS:Mn films by TEM selected area electron diffraction and confirmed by X-ray diffraction analysis. Dark field TEM imaging correlated this 8H ring with very small (∼2.5 nm) grains present throughout the low temperature film with a slightly higher density at the film/substrate interface. The 700°C post-deposition annealing was found to initiate a solid state transformation to the cubic (3C) ZnS crystal structure, and resulted in an average grain size of ∼250 nm at the surface of the annealed film.


2005 ◽  
Vol 20 (10) ◽  
pp. 2676-2681 ◽  
Author(s):  
Maolin Pang ◽  
Xiaoming Liu ◽  
Jun Lin

R2MoO6:Eu3+ (R = Gd, Y, La) phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), reflectance spectra, photoluminescence (PL) spectra, and lifetimes were used to characterize the resulting phosphors. The results of XRD indicate that all of the R1.96Eu0.04MoO6 (R = Gd, Y, La) phosphors crystallized completely at 800 °C. Y1.96Eu0.04MoO6 and Gd1.96Eu0.04MoO6 are of isomorphous monoclinic (α) structure, while La1.96Eu0.04MoO6 preferentially adopts the tetragonal (γ) form. FE-SEM study reveals that the samples mainly consist of aggregated particles with an average grain size ranging from 100 to 250 nm. The luminescent properties of R2MoO6:Eu3+ (R = Gd, Y, La) phosphors are largely dependent on their structure, grain size, and powder morphology. The isomorphous Y2MoO6:Eu3+ and Gd2MoO6:Eu3+ phosphors show very similar luminescence properties, which differ greatly from that of the La2MoO6:Eu3+ phosphor.


2012 ◽  
Vol 512-515 ◽  
pp. 147-152
Author(s):  
Shao Peng Zhang ◽  
Xiao Hui Wang ◽  
Long Tu Li

Nanocrystalline lead zirconate titanate (PZT) powders with composition at the morphotropic phase boundary (MPB) were synthesized by a simple aqueous based sol-gel method, using lead nitrate, zirconium nitrate and tetrabutyl titanate as the starting materials. The sol could be easily transformed into gel, firstly heated at 120°C for 10h, then at 180°C for 24h. The thermal decomposition process of the gel was investigated by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques. The effect of citrate addition amount on the calcining temperature was discussed. The results reveal that pure perovskite phase PZT powders can be obtained at a calcining temperature as low as 600°C. The average grain size of the powders was determined by transmission electron microscope and X-ray diffraction. The influences of calcining temperature and the pH value of the solution on the grain size were investigated. The sintering temperature and electrical properties of the ceramics derived by nano-powders were compared with those prepared by the conventional ceramic processing. The result shows that using the nanopowder, the sintering temperature could be reduced by about 100°C and the ferroelectric properties were enhanced.


2020 ◽  
Vol 75 (3) ◽  
pp. 249-256
Author(s):  
Mukhtar Ahmad ◽  
Rizwan Ali ◽  
Atiq ur Rehman ◽  
Akbar Ali ◽  
Ishrat Sultana ◽  
...  

AbstractMultiferroics with chemical formula BiAlxFe1−xO3 (x = 0, 0.1, 0.2, and 0.3) and substituted by Al are synthesised using sol–gel auto-combustion. The materials are sintered at 500 °C for 5 h. In the ongoing study, the crystal structure of BiAlxFe1−xO3 was investigated by X-ray diffraction. After confirming the rhombohedral single-phase crystal structure, various characterisation techniques, such as scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, elemental mapping images, electrical properties, Fourier transform infrared spectroscopy, and vibrating sample magnetometry (VSM), were used to investigate the synthesised samples. The grain size estimated from SEM images decreased as Al contents increased. Elemental composition was confirmed by EDX spectra. Direct current electrical resistivity increased whereas drift mobility decreased with increasing Al contents. The VSM results of Al-doped BiFeO3 (BFO) demonstrate that BFO crystals with size >60 nm show anti-ferromagnetic behaviour, which is evident in the present study. The increase in Al doping results in an increase in coercivity, as grain size and coercivity are inversely related with each other. This is because of the replacement of Fe3+ by Al3+ ions, which weakens the sub-lattice interactions. It has been observed that BFO materials with such parameters are favourable for ferroelectric random access memories where data can be written electrically and read magnetically.


2008 ◽  
Vol 368-372 ◽  
pp. 378-380
Author(s):  
Xiu Mei Han ◽  
J. Lin ◽  
M. Yu ◽  
C.K. Lin ◽  
Xi Wei Qi ◽  
...  

Spherical SiO2 particles were coated with Ca2Y8(SiO4)6O2:Eu3+ phosphor layers through a sol-gel process. The results of XRD (X-ray diffraction) analysis indicated that the phosphors crystallized completely at 1000oC. AFM study revealed that the average grain size is 500 nm. In Ca2Y8(SiO4)6O2:Eu3+ spherical phosphors , the Eu3+ showed its characteristic red emission at 612 nm(5D0-7F2) upon excitation into its charge transfer band of Eu3+-O2- at 242nm.


2011 ◽  
Vol 130-134 ◽  
pp. 3298-3301
Author(s):  
Xiang Hu Li ◽  
Dan Li

The compounds of Fe substitution of Cr in nanotructured Sr2Fe1-xCrxMoO6(0≤x≤0.3) double perovskite have been prepared by sol-gel method. The x-ray diffraction patterns of the samples show that the samples are in nanometer range. And the average grain size D for these samples is 39.7, 37.1, 33.4, 31.9, and 31.2nm, respectively, decreases with the increasing of Cr ion. The saturation magnetization and the magnetoresistance of the samples decrease with the increasing of Cr for the disorder defects which increase for the close ionic radii of Mo and Cr.


Author(s):  
T. Pikula ◽  
T. Szumiata ◽  
K. Siedliska ◽  
V. I. Mitsiuk ◽  
R. Panek ◽  
...  

AbstractIn this work, BiFeO3 powders were synthesized by a sol–gel method. The influence of annealing temperature on the structure and magnetic properties of the samples has been discussed. X-ray diffraction studies showed that the purest phase was formed in the temperature range of 400 °C to 550 °C and the samples annealed at a temperature below 550 °C were of nanocrystalline character. Mössbauer spectroscopy and magnetization measurements were used as complementary methods to investigate the magnetic state of the samples. In particular, the appearance of weak ferromagnetic properties, significant growth of magnetization, and spin-glass-like behavior were observed along with the drop of average grain size. Mössbauer spectra were fitted by the model assuming cycloidal modulation of spins arrangement and properties of the spin cycloid were determined and analyzed. Most importantly, it was proved that the spin cycloid does not disappear even in the case of the samples with a particle size well below the cycloid modulation period λ = 62 nm. Furthermore, the cycloid becomes more anharmonic as the grain size decreases. The possible origination of weak ferromagnetism of the nanocrystalline samples has also been discussed.


2018 ◽  
Vol 64 (4) ◽  
pp. 381
Author(s):  
Muhammad Tufiq Jamil ◽  
Javed Ahmad ◽  
Syed Hamad Bukhari ◽  
Murtaza Saleem

Rare earth nano sized pollycrystalline orthoferrites and orthocromites ReT mO3 (Re = La, Nd, Gd, Dy, Y and T m = Fe, Cr) have been synthesized by sol-gel auto combustion citrate method. The samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy. The samples are single phase as confirmed by XRD analysis and correspond to the orthorhombic crystal symmetry with space group pbnm. Debye Scherer formula and Williamson Hall analysis have been used to calculate the average grain size which is consistent with that of determined from SEM analysis and varied between 25-75 nm. The elemental compositions of all samples have been checked by EDX analysis. Different crystallographic parameters are calculated with strong structural correlation among Re and Tm sites. The optical energy band gap has been calculated by using Tauc relation estimated to be in the range of 1.77 - 1.87 eV and 2.77 - 3.14 eV, for ReFeO3 and ReCrO3, respectively.


2007 ◽  
Vol 26-28 ◽  
pp. 243-246
Author(s):  
Xing Hua Yang ◽  
Jin Liang Huang ◽  
Xiao Wang ◽  
Chun Wei Cui

BaBi4-xLaxTi4O15 (BBLT) ceramics were prepared by conventional solid phase sintering ceramics processing technology. The crystal structure and the microstructure were detected by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD analyses show that La3+ ions doping did not change the crystal structure of BBT ceramics. The sintering temperature increased from 1120°C to 1150°C with increasing Lanthanum content from 0 to 0.5, but it widened the sintering temperature range from 20°C to 50°C and refined the grain size of the BBT ceramic. Additionally, polarization treatment was performed and finally piezoelectric property was measured. As a result, the piezoelectric constant d33 of the 0.1at.% doped BBLT ceramics reached its highest value about 22pc/N at polarizing electric field of 8kV/mm and polarizing temperature of 120°C for 30min.


Sign in / Sign up

Export Citation Format

Share Document