MOCVD ZnS:Mn Films: Grain Size Distribution and Crystal Structure as a Function of the Growth Parameters

2001 ◽  
Vol 672 ◽  
Author(s):  
Kathleen A. Dunn ◽  
Katharine Dovidenko ◽  
Anna W. Topol ◽  
Serge R. Oktyabrsky ◽  
Alain E. Kaloyeros

ABSTRACTZinc sulfide doped with manganese is extensively used for thin film electroluminescent device applications. In order to assess the key material and process challenges, ZnS:Mn layers were fabricated by metalorganic chemical vapor deposition in the 250°-500°C range on an AlTiO/InSnO/glass stack. The microstructure of the ZnS:Mn films was examined by Transmission Electron Microscopy (TEM) as part of a larger study which fully characterizes these films by a variety of structural and chemical characterization techniques, including Rutherford Backscattering, Secondary Ion Mass Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and X-ray Diffraction. For all the growth conditions, the films were found to be polycrystalline having predominantly 2H hexagonal ZnS structure. The ZnS grains are found to grow columnar as the film thickness increases, also widening in the direction parallel to the substrate surface and reaching the 100 - 200 nm average lateral size at the 650 nm film thickness. The presence of the 8H ZnS polytype was detected in the low-temperature ZnS:Mn films by TEM selected area electron diffraction and confirmed by X-ray diffraction analysis. Dark field TEM imaging correlated this 8H ring with very small (∼2.5 nm) grains present throughout the low temperature film with a slightly higher density at the film/substrate interface. The 700°C post-deposition annealing was found to initiate a solid state transformation to the cubic (3C) ZnS crystal structure, and resulted in an average grain size of ∼250 nm at the surface of the annealed film.

2013 ◽  
Vol 747-748 ◽  
pp. 613-618
Author(s):  
Qiao Zhang ◽  
Shu Hua Liang ◽  
Chen Zhang ◽  
Jun Tao Zou

The as-cast Ni-W alloys with 15wt%W, 25wt%W and 30wt%W were annealed in hydrogen at 1100. The effect of the annealing time on the microstructure of Ni-W alloys was studied, and the phase constituents and microstructure of annealed Ni-W alloys were characterized by the X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that no any phase changed for Ni-15%W, Ni-25%W and Ni-30%W alloys annealed for 60 min, 90 min and 150 min, which were still consisted of single-phase Ni (W) solid solution. However, microstructure had a significant change after annealing. With increase of annealing time, the microstructure of Ni-15%W alloy became more uniform after annealing for 90 min, and the average grain size was 95μm, whereas the grain size of Ni-15%W alloy increased significantly after annealing for 150 min. For Ni-25%W and Ni-30%W, there was no obvious change on the grain size with increase of annealing time, and the amount of oxides at grain boundaries gradually reduced. After annealing for 150 min, the impurities at grain boundaries almost disappeared. Subsequently, the annealing at 1100 for 150 min was beneficial for the desired microstructure of Ni-25%W and Ni-30%W alloys.


2005 ◽  
Vol 20 (3) ◽  
pp. 554-557 ◽  
Author(s):  
A.M. Hodge ◽  
J. Biener ◽  
L.L. Hsiung ◽  
Y.M. Wang ◽  
A.V. Hamza ◽  
...  

We describe a two-step dealloying/compaction process to produce nanocrystalline Au. First, nanocrystalline/nanoporous Au foam was synthesized by electrochemically driven dealloying. The resulting Au foams exhibited porosities of ∼60% with pore sizes of 40 and 100 nm and a typical grain size of <50 nm. Second, the nanoporous foams were fully compacted to produce nanocrystalline monolithic Au. The compacted Au was characterized by transmission electron microscopy and x-ray diffraction and tested by depth-sensing nanoindentation. The compacted nanocrystalline Au exhibited an average grain size of <50 nm and hardness values ranging from 1.4 to 2.0 GPa, which were up to 4.5 times higher than the hardness values obtained from polycrystalline Au.


2004 ◽  
Vol 18 (12n13) ◽  
pp. 597-602 ◽  
Author(s):  
YINGWEN DUAN ◽  
JIANGONG LI

Using a sol-gel method, La 1-x Ca x MnO 3(0≤x≤0.5) nanoparticles with nearly the same average grain size of about 21 nm and different Ca contents, La 0.8 Ca 0.2 MnO 3 nanoparticles with various average grain sizes were prepared. Crystal structure was investigated by X-ray diffraction. Increasing Ca content and decreasing grain size can lead to the average Mn–O bond lengths decrease and Mn–O–Mn bond angles increase. The crystal symmetry changes from orthorhombic to cubic as x≥0.3 for the La 1-x Ca x MnO 3(0≤x≤0.5) nanoparticles with nearly the same average grain size and D~16 nm for the La 0.8 Ca 0.2 MnO 3 nanoparticles with various grain sizes. Small-size effect and surface effect may be the reasons of the lattice distortion and structure transition.


2021 ◽  
pp. 174751982098472
Author(s):  
Lalmi Khier ◽  
Lakel Abdelghani ◽  
Belahssen Okba ◽  
Djamel Maouche ◽  
Lakel Said

Kaolin M1 and M2 studied by X-ray diffraction focus on the mullite phase, which is the main phase present in both products. The Williamson–Hall and Warren–Averbach methods for determining the crystallite size and microstrains of integral breadth β are calculated by the FullProf program. The integral breadth ( β) is a mixture resulting from the microstrains and size effect, so this should be taken into account during the calculation. The Williamson–Hall chart determines whether the sample is affected by grain size or microstrain. It appears very clearly that the principal phase of the various sintered kaolins, mullite, is free from internal microstrains. It is the case of the mixtures fritted at low temperature (1200 °C) during 1 h and also the case of the mixtures of the type chamotte cooks with 1350 °C during very long times (several weeks). This result is very significant as it gives an element of explanation to a very significant quality of mullite: its mechanical resistance during uses at high temperature remains.


2012 ◽  
Vol 496 ◽  
pp. 379-382
Author(s):  
Rui Song Yang ◽  
Ming Tian Li ◽  
Chun Hai Liu ◽  
Xue Jun Cui ◽  
Yong Zhong Jin

The Cu0.81Ni0.19 has been synthesized directly from elemental powder of nickel and copper by mechanical alloying. The alloyed Cu0.81Ni0.19 alloy powders are prepared by milling of 8h. The grain size calculated by Scherrer equation of the NiCu alloy decreased with the increasing of milling time. The end-product was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM)


2007 ◽  
Vol 26-28 ◽  
pp. 243-246
Author(s):  
Xing Hua Yang ◽  
Jin Liang Huang ◽  
Xiao Wang ◽  
Chun Wei Cui

BaBi4-xLaxTi4O15 (BBLT) ceramics were prepared by conventional solid phase sintering ceramics processing technology. The crystal structure and the microstructure were detected by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD analyses show that La3+ ions doping did not change the crystal structure of BBT ceramics. The sintering temperature increased from 1120°C to 1150°C with increasing Lanthanum content from 0 to 0.5, but it widened the sintering temperature range from 20°C to 50°C and refined the grain size of the BBT ceramic. Additionally, polarization treatment was performed and finally piezoelectric property was measured. As a result, the piezoelectric constant d33 of the 0.1at.% doped BBLT ceramics reached its highest value about 22pc/N at polarizing electric field of 8kV/mm and polarizing temperature of 120°C for 30min.


2012 ◽  
Vol 198-199 ◽  
pp. 99-102
Author(s):  
Qing Gang Kong ◽  
Hai Yan Qian

Magnesium nitrate was used as additive for synthesis of Mg(OH)2 (MH) nanoparticles at low temperature (70°C). Mg(OH)2 nanoparticles have platelet-like structure and approximately 40-60nm in thicknesses. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied to characterize the crystal phase. The supersaturation degree of solution effects the size and morphology of MH nanoparticles.


Author(s):  
Céline Roux-Byl ◽  
David Berardan

We report on the intrinsic non-stoichiometry and the influence of fluorine doping on the low temperature transport properties of layered oxysulfide LaOPbBiS3. From X-ray diffraction coupled to electron microscopy studies,...


2018 ◽  
Vol 281 ◽  
pp. 156-162
Author(s):  
Wang Nian Zhang ◽  
Xi Tang Wang ◽  
Zhou Fu Wang

The influence of the light burning temperature on the sintering property of nature dolomite has been investigated by two-step sintering process in the temperature range 1500 °C to 1600 °C. The resulting bulk densities and apparent porosities of the sintered dolomite samples were examined, and analyzing the sintered dolomite by scanning electron microscopy and X-ray diffraction were performed. The results showed light burned at 850 °C for 3 h, the main phases of the dolomite with 3-5 grain size were MgO, CaO and little CaCO3, and then fired at 1600 °C,the density of sintering dolomite reached to 3.38 g/cm3, the apparent property was 1.2 %, the size of MgO grain up to 3.75 μm . However when dolomite light burned at 1050 °C for 3 h, the main phases were MgO and CaO, and then fired at 1600 °C,the density of sintering dolomite only was 3.30 g/cm3, the apparent property was 2.3 %, the size of MgO only was 3.05 μm .


1992 ◽  
Vol 271 ◽  
Author(s):  
Isao Yag ◽  
Shoji Kaneko

ABSTRACTTin oxide films were grown from di-n-butyltin diacetate on a heated glass substrate by a pneumatic spraying system The effects of various film growth parameters. i.e solvent, solution feed rate, film thickness, and film growth rate on the microstructures of the films were studied by X-ray diffraction and scanning electron microscopy The SnO2 films of the (200) plane were grown by the optimum growth parameters


Sign in / Sign up

Export Citation Format

Share Document