Primary pyroelectric transition temperatures of binary nitrides (AlN, GaN and InN)

2019 ◽  
Vol 33 (05) ◽  
pp. 1950049
Author(s):  
Muralidhar Swain ◽  
Sushant K. Sahoo ◽  
Bijay K. Sahoo

The primary pyroelectric transition temperature of wurtzite nitrides (AlN, GaN and InN) has been explored theoretically from their thermal properties. The spontaneous and piezoelectric polarization modifies the thermal conductivity of nitrides. The thermal conductivity [Formula: see text] as a function of temperature including and excluding the polarization mechanism predicts a transition temperature [Formula: see text] between primary and secondary pyroelectric effects. Below [Formula: see text], thermal conductivity including polarization field [Formula: see text] is lesser than thermal conductivity excluding polarization field [Formula: see text]. This is due to negative thermal expansion in binary nitrides below [Formula: see text]; however, above [Formula: see text], [Formula: see text]. [Formula: see text] is significantly contributed by piezoelectric polarization above [Formula: see text] due to thermal expansion which is the reason for the secondary pyroelectric effect. The transition temperature [Formula: see text] for AlN, GaN and InN has been predicted as 100 K, 70 K and 60 K, respectively, which fit well with the prior literature studies. This report proposes that thermal properties’ study can reveal the role of acoustic phonons in pyroelectricity.

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3185
Author(s):  
Zhongyuan Zhang ◽  
Xiaohan Dai ◽  
Le Li ◽  
Songsong Zhou ◽  
Wei Xue ◽  
...  

As a lightweight and highly insulating composite material, epoxy resin syntactic foam is increasingly widely used for insulation filling in electrical equipment. To avoid core burning and cracking, which are prone to occur during the casting process, the epoxy resin-based syntactic foam insulation materials with high thermal conductivity and low coefficient of thermal expansion are required for composite insulation equipment. The review is divided into three sections concentrating on the two main aspects of modifying the thermal properties of syntactic foam. The mechanism and models, from the aspects of thermal conductivity and coefficient of thermal expansion, are presented in the first part. The second part aims to better understand the methods for modifying the thermal properties of syntactic foam by adding functional fillers, including the addition of thermally conductive particles, hollow glass microspheres, negative thermal expansion filler and fibers, etc. The third part concludes by describing the existing challenges in this research field and expanding the applicable areas of epoxy resin-based syntactic foam insulation materials, especially cross-arm composite insulation.


2012 ◽  
Vol 512-515 ◽  
pp. 469-473 ◽  
Author(s):  
L. Liu ◽  
Z. Ma ◽  
F.C. Wang ◽  
Q. Xu

According to the theory of phonon transport and thermal expansion, a new complex rare-earth zirconate ceramic (La0.4Sm0.5Yb0.1)2Zr2O7, with low thermal conductivity and high thermal expansion coefficient, has been designed by doping proper ions at A sites. The complex rare-earth zirconate (La0.4Sm0.5Yb0.1)2Zr2O7 powder for thermal barrier coatings (TBCs) was synthesized by coprecipitation-calcination method. The phase, microstructure and thermal properties of the new material were investigated. The results revealed that single phase (La0.4Sm0.5Yb0.1)2Zr2O7 with pyrochlore structure was synthesized. The thermal conductivity and the thermal expansion coefficient of the designed complex rare-earth zirconate ceramic is about 1.3W/m•K and 10.5×10-6/K, respectively. These results imply that (La0.4Sm0.5Yb0.1)2Zr2O7 can be explored as the candidate material for the ceramic layer in TBCs system.


2016 ◽  
Vol 30 (32) ◽  
pp. 1650238
Author(s):  
Mikrajuddin Abdullah

I propose a model of a material that exhibits negative thermal expansion (NTE) properties and criteria for the occurrence of linear and volumetric NTE. I derived the criteria for an arbitrary force between rigid units in the material. These criteria are also discussed specifically for the Lennard–Jones (6–12) potential and in more detail for metal–organic framework (MOF) materials comprising rigid units connected by organic linkers. Qualitatively, the model predictions can explain some observed results. Surprisingly, the model can produce equations for the transition temperature from NTE to positive thermal expansion (PTE), [Formula: see text] K, which is exactly the same as the temperature at which the glass transition begins to occur in most polymers, i.e., [Formula: see text] K.


Author(s):  
Majid S. al-Dosari ◽  
D. G. Walker

Yttrium Aluminum Garnet (YAG, Y3Al5O12) and its varieties have applications in thermographic phosphors, lasing mediums, and thermal barriers. In this work, thermal properties of crystalline YAG where aluminum atoms are substituted with gallium atoms (Y3(Al1−xGax)5O12) are explored with molecular dynamics simulations. For YAG at 300K, the simulations gave values close to experimental values for constant-pressure specific heat, thermal expansion, and bulk thermal conductivity. For various values of x, the simulations predicted no change in thermal expansion, an increase in specific heat, and a decrease in thermal conductivity for x = 50%. Furthermore, the simulations predicted a decrease in thermal conductivity with decreasing system size.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Ifty Ahmed ◽  
S. S. Shaharuddin ◽  
N. Sharmin ◽  
D. Furniss ◽  
C. Rudd

AbstractPhosphate glasses are novel amorphous biomaterials due to their fully resorbable characteristics, with controllable degradation profiles. In this study, phosphate glasses containing titanium and/or iron were identified to exhibit sufficiently matched thermal properties (glass transition temperature, thermal expansion coefficient and viscosity) which enabled successful co-extrusion of glass billets to form a core/clad preform. The cladding composition for the core/clad preforms were also reversed. Fe clad and Ti clad fibres were successfully drawn with an average diameter of between 30~50 μm. The average cladding annular thickness was estimated to be less than 2 μm. Annealed core/clad fibres were degraded in PBS for a period of 27 days. The strength of the Fe clad fibres appeared to increase from 303 ± 73 MPa to 386 ± 45 MPa after nearly 2 weeks in the dissolution medium (phosphate buffered solution) before decreasing by day 27. The strength of the Ti clad fibres revealed an increase from 236 ± 53 MPa to 295 ± 61 MPa when compared at week 3. The tensile modulus measured for both core/clad fibres ranged between 51 GPa to 60 GPa. During the dissolution study, Fe clad fibres showed a peeling mechanism compared to the Ti clad fibres.


2017 ◽  
Vol 14 (130) ◽  
pp. 20170127 ◽  
Author(s):  
Sina Youssefian ◽  
Nima Rahbar ◽  
Christopher R. Lambert ◽  
Steven Van Dessel

Given their amphiphilic nature and chemical structure, phospholipids exhibit a strong thermotropic and lyotropic phase behaviour in an aqueous environment. Around the phase transition temperature, phospholipids transform from a gel-like state to a fluid crystalline structure. In this transition, many key characteristics of the lipid bilayers such as structure and thermal properties alter. In this study, we employed atomistic simulation techniques to study the structure and underlying mechanisms of heat transfer in dipalmitoylphosphatidylcholine (DPPC) lipid bilayers around the fluid–gel phase transformation. To investigate this phenomenon, we performed non-equilibrium molecular dynamics simulations for a range of different temperature gradients. The results show that the thermal properties of the DPPC bilayer are highly dependent on the temperature gradient. Higher temperature gradients cause an increase in the thermal conductivity of the DPPC lipid bilayer. We also found that the thermal conductivity of DPPC is lowest at the transition temperature whereby one lipid leaflet is in the gel phase and the other is in the liquid crystalline phase. This is essentially related to a growth in thermal resistance between the two leaflets of lipid at the transition temperature. These results provide significant new insights into developing new thermal insulation for engineering applications.


2003 ◽  
Vol 18 (4) ◽  
pp. 855-860 ◽  
Author(s):  
Gary L. Eesley ◽  
Alaa Elmoursi ◽  
Nilesh Patel

Kinetic spray deposition provides a new means for producing composite materials with tailored physical properties. We report on measurements of the thermal conductivity and thermal-expansion coefficient for several compositional variations of kinetically sprayed Al–SiC metal-matrix composites. As a result of the deposition process, inclusion of SiC particles saturates in the 30–40% volume fraction range.


2020 ◽  
Vol 55 (14) ◽  
pp. 5730-5740
Author(s):  
Zhiping Zhang ◽  
Yuenan Wang ◽  
Weikang Sun ◽  
Xiuyun Zhang ◽  
Hongfei Liu ◽  
...  

2014 ◽  
Vol 50 (95) ◽  
pp. 14960-14963 ◽  
Author(s):  
Kai-Yao Wang ◽  
Mei-Ling Feng ◽  
Liu-Jiang Zhou ◽  
Jian-Rong Li ◽  
Xing-Hui Qi ◽  
...  

Through the study on a new Mn2(api)Sb2S5compound, we propose a strategy for designing a novel hybrid with uniaxial NTE behaviour based on the synergistic role of organic and inorganic components.


2015 ◽  
Vol 29 (21) ◽  
pp. 1550149 ◽  
Author(s):  
A. Pansari ◽  
V. Gedam ◽  
B. K. Sahoo

In this paper, the effect of built-in-polarization field on lattice thermal conductivity of AlN/GaN/AlN quantum well (QW) has been theoretically investigated. The built-in-polarization field at the hetero-interface of GaN/AlN modifies elastic constant, phonon velocity and Debye temperature of GaN QW. The relaxation time of acoustic phonons (AP) in various scattering processes in GaN with and without built-in-polarization field has been computed at room temperature. The result shows that combined relaxation time of AP is enhanced by built-in-polarization field and implies a longer mean free path. The revised intrinsic and extrinsic thermal conductivities of GaN have been estimated. The theoretical analysis shows that up to a certain temperature the polarization field acts as negative effect and reduces the thermal conductivities. However, after this temperature both thermal conductivities are significantly contributed by polarization field. This gives the idea of temperature dependence of polarization effect which signifies the pyro-electric character of GaN. The intrinsic thermal conductivity at room temperature for with and without polarization mechanism is found to be 491 Wm -1 K -1 and 409 Wm -1 K -1, respectively i.e., 20% enhancement. However, the extrinsic thermal conductivity at room temperature for with and without polarization mechanism is found to be 280 Wm -1 K -1 and 245 Wm -1 K -1, respectively i.e., 13% enhancement. The method we have developed may be taken into account during the simulation of heat transport in optoelectronic nitride devices to minimize the self-heating processes and in polarization engineering strategies to optimize the thermoelectric performance of GaN alloys.


Sign in / Sign up

Export Citation Format

Share Document