Geometric parameters optimization of a two-dimensional phoxonic crystal with dual forbidden band characteristics

Author(s):  
Xingfu Ma ◽  
Zhinong Li ◽  
Jiawei Xiang ◽  
Chengjun Wang

In this paper, a novel phoxonic crystal (PxC) structure composed of silicon, with optimal dual phononic band gap (PNBG) and photonic band gap (PTBG), is presented. Using the finite element analysis method, both the transmission characteristics and dispersion relation of PNBG and PTBG are calculated, and the existence of dual BGs is demonstrated by the means of the analysis of transmission for the PxC structure. The influences of structural parameters on the dual forbidden band characteristics are further explored, the sensitive structure parameters can be determined: the width of elastic beams, the length of square silicon, and the length of square hole. Using the orthogonal test, 25 experimental runs based on 3-factor and 5-level experiment are performed to finish the numerical experimental design and analysis. Four functional relationships can be acquired between the three sensitive parameters and dual BGs. Finally, the unified objective function method is employed to perform the construction of the single objective optimization model for the purpose of obtaining the optimal dual BGs and the corresponding optimal parameter combinations of the PxC structure. Such scheme can be used as the potential optimization way, which may find wide application in the development and design of PxCs.

2014 ◽  
Vol 553 ◽  
pp. 824-829 ◽  
Author(s):  
Xiao Dong Huang ◽  
Shi Wei Zhou ◽  
Yi Min Xie ◽  
Qing Li

This paper proposes a new topology optimization algorithm based on the bi-directional evolutionary structural optimization (BESO) method for the design of photonic band gap crystals. The photonic crystals are assumed to be periodically composed of two given dielectric materials. Based on the finite element analysis, the proposed BESO algorithm gradually re-distributes dielectric materials within the unit cell until the resulting photonic crystals possess a maximal band gap at the desirable frequency level. Numerical examples for both transverse magnetic (TM) and transverse electric (TE) polarizations are presented, and the optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.


Author(s):  
Y. J. Tang ◽  
Z. Yang ◽  
X. J. Wang ◽  
J. Wang

This paper presents an investigation of a novel linear-type piezoelectric ultrasonic actuator for application in a Smart Fuze Safety System (SFSS). Based on the requirements of SFSS, the structural parameters of the proposed piezoelectric ultrasonic actuator are determined by fuze arming mode. Moreover, sensitivity analysis of the structural parameters to the frequency consistency is conducted using FEM software, after which the optimal dimensions are obtained with two close natural vibration frequencies. To validate the results of FEM, the frequency sweep tests of the piezoelectric ultrasonic actuator are performed to determine the motor’s actual working mode frequencies with PSV-300-B Doppler laser vibrometer system. Furthermore, the results of frequency sweep test are compared with that of the finite element analysis, and further verified by impedance analyzer. To investigate the overall performance of the piezoelectric ultrasonic actuator, vibration modes of actuator’s stator, output speed and force of the piezoelectric ultrasonic actuator are tested. The experimental results show that the output speed and force of the actuator can reach 88.2 mm/s and 2.3N respectively, which means that piezoelectric ultrasonic actuator designed in this paper can meet the demands of the SFSS.


2014 ◽  
Vol 697 ◽  
pp. 239-243 ◽  
Author(s):  
Xiao Hui Liu ◽  
Yong Gang Xu ◽  
De Ying Guo ◽  
Fei Liu

For mill gearbox fault detection problems, and puts forward combining support vector machine (SVM) and genetic algorithm, is applied to rolling mill gear box fault intelligent diagnosis methods. The choice of parameters of support vector machine (SVM) is a very important for the SVM performance evaluation factors. For the selection of structural parameters of support vector machine (SVM) with no theoretical support, select and difficult cases, in order to reduce the SVM in this respect, puts forward the genetic algorithm to optimize parameters, and the algorithm of the model is applied to rolling mill gear box in intelligent diagnosis, using the global searching property of genetic algorithm and support vector machine (SVM) of the optimal parameter values. Results showed that the suitable avoided into local solution optimization, the method to improve the diagnostic accuracy and is a very effective method of parameter optimization, and intelligent diagnosis for rolling mill gear box provides an effective method.


2010 ◽  
Vol 43 ◽  
pp. 387-390 ◽  
Author(s):  
W. Wang ◽  
Jian Zhong Zhou ◽  
Shu Huang ◽  
Yu Jie Fan ◽  
C.D. Wang ◽  
...  

Laser shot peening (LSP) has recently received more and more attention as a viable laser processing technology, since it can obtain the desirable residual compressive stress to improve fatigue life of the material by precisely controlling laser parameters. The purpose of this paper is mainly to explore the optimal residual compressive stress in the surface layer during LSP by statistical optimization algorithm. Based on the finite element analysis software ANSYS, Multi-island Genetic Algorithm (MIGA) is adopted to find the best solution of design requirements, the control parameters are laser pulse energy and spot diameter, while the aim parameters are residual compressive stress and deformation values, respectively. The results indicate that the optimal residual compressive stress obtained by integrated optimization technique can significantly improve the mechanical properties of the target after LSP. It provides a guiding importance for parameters optimization in future experimental research and practical application.


2010 ◽  
Vol 145 ◽  
pp. 317-320
Author(s):  
Chun Ming Zhang ◽  
Run Yuan Hao

This text is on the basis of the investigation of the 42MN flatting mill’s higher beam, establishing the flatting mill’s higher beam’s finite element model and the mathematical model which has optimum structure. According to the results of their structure finite element analysis, weaved the relevant procedures and optimized them, obtained ideal structural parameters, this text provide better ideas and ways for the structural design of the flatting mill’s higher beam.


2019 ◽  
Vol 33 (26) ◽  
pp. 1950312 ◽  
Author(s):  
Hongfeng Zhai ◽  
Hang Xiang ◽  
Xingfu Ma ◽  
Jiawei Xiang

In this paper, a comb-like locally resonant phononic crystal (LRPC) with optimal structural parameters, which has good low frequency and broadband band gaps (BGs) between 20–250 Hz, is investigated numerically. With the intention of obtaining the optimal structural parameters, based on the structures with different number of the short elastic beams, 2-factor (the two key structural parameters, i.e. the width of the scatterer and the thickness of elastic beams) and 7-level numerical experiments are designed to obtain simulations data using finite element method (FEM). The functional relationships are further constructed using the response surface method (RSM) analysis, i.e. the relationship of the starting frequency of the first BG and the two factors, the terminating frequency of the second BG and the two factors, and the relationship of the total bandwidth of the first two BG and the two factors. After calculation using interior point method, the BGs of LRPC with optimal structural parameters are determined with lower and wider BGs below 250 Hz.


2010 ◽  
Vol 34-35 ◽  
pp. 197-201
Author(s):  
Jian Rong Pan ◽  
Zhan Wang ◽  
Cheng Su ◽  
Lei Wang

In traditional semi-rigid analysis of extended end plate connections is assumed to be deterministic parameters, most of moment-rotation models of the joint is determined by curve-fitting and statistically regressed with the test data. Those parameters of the models have little physical meanings and the effect of correlations between parameters is neglected. This paper deals with a semi-rigid joint of extended end plate connections based on correlation and sensitivity analysis. A numerical study was carried out and the finite element analysis was validated compared with the experimental results.The relative moment-rotation model was concluded based on correlations in parameters and probabilistic sentivity analysis. The relationship between height and width of steel beam was partial correlation, the relationship between thickness of steel beam flange and thickness of steel beam web was partial correlation. Height and width of steel beam, the distance of upper bolts to axle wire of steel beam were important sensitive parameters for the extended end plate connections.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Weigang Deng ◽  
Chunguang Wang ◽  
Shengshi Xie

Abstract To obtain the collision characteristics of potatoes colliding with steel rods of different parameters, the finite element analysis (FEA) method was used to study the impact contact stress, collision displacement, acceleration and impact force. The results showed that with increasing rod diameter, the maximum collision displacement of the potato in the Y direction decreased, and the maximum collision acceleration and impact peak force increased. With increasing rod tilt angle and rod spacing, the maximum collision displacement increased linearly, but the maximum collision acceleration and impact peak force decreased linearly. Within the range of analysis factors, the fluctuation of the maximum collision displacement, acceleration and impact peak force caused by the change in rod diameters were the smallest, which were 0.34 mm, 38 m/s2 and 9 N, respectively. When potatoes collided with single and double rods, all the collision characteristics increased with the increase in potato drop height, and the results for double rods were significantly smaller than those for single rod collision. When the potato mass was 250 g, the drop height was 200 mm for single rod collision or 250 mm for double rod collision, the impact contact stress reached the yield stress, and the potato was damaged. This article provides a data basis and a referenced method for the optimized design of the structural parameters and working parameters of the rod separator in the process of potato mechanized harvesting.


2011 ◽  
Vol 31 (s1) ◽  
pp. s100202
Author(s):  
黄爱琴 Huang Aiqin ◽  
郑继红 Zheng Jihong ◽  
徐邦联 Xu Banglian ◽  
蒋妍梦 Jiang Yanmeng ◽  
唐平玉 Tang Pingyu ◽  
...  

2014 ◽  
Vol 668-669 ◽  
pp. 226-229
Author(s):  
Hui Xue Bao ◽  
Qiang Liu ◽  
Rong Qi Wang ◽  
Cheng Ming Zuo ◽  
Xiao Qin Zhou

Flexure hinges are regarded as the critical components of the compliant mechanisms, its performance is one of the significant factors which could directly determine the merits and demerits of designed compliant mechanisms. So how to optimize the flexure hinges becomes the key step in designing processes of compliant mechanisms. In view of the presented importance of flexure hinges, this paper proposes a sort of multi-objective optimization method which can rapidly analyze the sensitivity and interactional laws between the performance indexes and the structural parameters of flexure hinges with the Workbench software, then to select the optimal parameters by combining with the actual working conditions of flexure hinges. Finally the finite element analysis is employed to analyze the optimization results and verify the effectiveness of proposed optimization method.


Sign in / Sign up

Export Citation Format

Share Document