STRUCTURAL, ELECTRICAL AND MAGNETIC PROPERTIES OF HIGH-TcYBa1.5Ca0.5Cu3O6+δ SUPERCONDUCTOR

1996 ◽  
Vol 10 (27) ◽  
pp. 1349-1353
Author(s):  
I. POP ◽  
L. HOMORODEAN ◽  
I. BURDA ◽  
M. ANDRECUT

A high-Tc YBa 1.5 Ca 0.5 Cu 3 O 6+δ superconductor was synthesized, with the critical temperature Tc=84.9 K. The crystalline structure is orthorhombic with the lattice parameters a=3.8665 Å, b=3.9217 Å and c=11.7652 Å, characteristic for the 123 superconductors. The diamagnetic transition in the temperature dependence of the magnetic susceptibility strongly depends on the recycling of the samples and the onset of superconductibility is depressed by the magnetic field intensity.

2016 ◽  
Vol 257 ◽  
pp. 107-110 ◽  
Author(s):  
Tadeusz Groń ◽  
Elzbieta Tomaszewicz ◽  
Marek Berkowski ◽  
Monika Oboz ◽  
Joachim Kusz ◽  
...  

X-ray diffraction measurement at 298 K of CdMoO4:Dy3+ showed that the molybdenum ions are tetrahedral coordinated and Cd/Dy – dodecahedral coordinated. The Dy3+ ions are randomly distributed in the unit cell, substituting the Cd2+ ones. The temperature dependence of ac and dc magnetic susceptibility showed a lack of the Curie-Weiss behaviour and a weak response to the magnetic field. The magnetization isotherms, M(H), showed a paramagnetic-diamagnetic transition at 17 K for 〈100〉 direction and at 35 K for 〈001〉 one in the magnetic field of 70 kOe. As the temperature increased this transition was moving toward smaller magnetic fields.


1986 ◽  
Vol 89 ◽  
Author(s):  
M. Gorska ◽  
J. R. Anderson ◽  
Z. Golacki

AbstractThe magnetization and magnetic susceptibility of Bridgman-grown Pb1-xGdxTe have been measured over a temperature range from 2 to 300 K and in magnetic fields from 0.01 to 50 κOe. The x-values of the crystals ranged from 0.03 to 0.07. The magnetic susceptibility followed a Curie-Weiss behavior, χ = C/(T + θ), with positive θ implying an antiferromagnetic exchange interaction between Gd ions. The magnetic field dependence of the magnetization was fitted to a modified Brillouin function with parameter values that agreed fairly well with those from Curie-Weiss plots. The magnitude of θ was comparable to the value found for Pb1-xMnxTe for similar x values; but since the ion spin is bigger for Gd this suggests that the exchange interaction in Gd-doped PbTe is roughly half the value in Mn-doped PbTe.


SPIN ◽  
2018 ◽  
Vol 08 (03) ◽  
pp. 1850010
Author(s):  
D. Farsal ◽  
M. Badia ◽  
M. Bennai

The critical behavior at the phase transition of the ferromagnetic two-dimensional anisotropic Ising model with next-nearest neighbor (NNN) couplings in the presence of the field is determined using mainly Monte Carlo (MC) method. This method is used to investigate the phase diagram of the model and to verify the existence of a divergence at null temperature which often appears in two-dimensional systems. We analyze also the influence of the report of the NNN interactions [Formula: see text] and the magnetic field [Formula: see text] on the critical temperature of the system, and we show that the critical temperature depends on the magnetic field for positive values of the interaction. Finally, we have investigated other thermodynamical qualities such as the magnetic susceptibility [Formula: see text]. It has been shown that their thermal behavior depends qualitatively and quantitatively on the strength of NNN interactions and the magnetic field.


Author(s):  
G. Gulyamov ◽  
U. I. Erkaboev ◽  
A. G. Gulyamov

The article considers the oscillations of interband magneto-optical absorption in semiconductors with the Kane dispersion law. We have compared the changes in oscillations of the joint density of states with respect to the photon energy for different Landau levels in parabolic and non-parabolic zones. An analytical expression is obtained for the oscillation of the combined density of states in narrow-gap semiconductors. We have calculated the dependence of the maximum photon energy on the magnetic field at different temperatures. A theoretical study of the band structure showed that the magnetoabsorption oscillations decrease with an increase in temperature, and the photon energies nonlinearly depend on a strong magnetic field. The article proposes a simple method for calculating the oscillation of joint density of states in a quantizing magnetic field with the non-quadratic dispersion law. The temperature dependence of the oscillations joint density of states in semiconductors with non-parabolic dispersion law is obtained. Moreover, the article studies the temperature dependence of the band gap in a strong magnetic field with the non-quadratic dispersion law. The method is applied to the research of the magnetic absorption in narrow-gap semiconductors with nonparabolic dispersion law. It is shown that as the temperature increases, Landau levels are washed away due to thermal broadening and density of states turns into a density of states without a magnetic field. Using the mathematical model, the temperature dependence of the density distribution of energy states in strong magnetic fields is considered. It is shown that the continuous spectrum of the density of states, measured at the temperature of liquid nitrogen, at low temperatures turns into discrete Landau levels. Mathematical modeling of processes using experimental values of the continuous spectrum of the density of states makes it possible to calculate discrete Landau levels. We have created the three-dimensional fan chart of magneto optical oscillations of semiconductors with considering for the joint density of energy states. For a nonquadratic dispersion law, the maximum frequency of the absorbed light and the width of the forbidden band are shown to depend nonlinearly on the magnetic field. Modeling the temperature  dependence allowed us to determine the Landau levels in semiconductors in a wide temperature spectrum. Using the proposed model, the experimental results obtained for narrow-gap semiconductors are analyzed. The theoretical results are compared with experimental results.


2008 ◽  
Vol 104 (3) ◽  
pp. 033918 ◽  
Author(s):  
Bradley W. Peterson ◽  
Samuel M. Allen ◽  
Robert C. O’Handley

2011 ◽  
Vol 25 (26) ◽  
pp. 3435-3442
Author(s):  
XIAOYAN YAO

Wang–Landau algorithm of Monte Carlo simulation is performed to understand the thermodynamic and magnetic properties of antiferromagnetic Ising model on honeycomb lattice. The internal energy, specific heat, free energy and entropy are calculated to present the thermodynamic behavior. For magnetic property, the magnetization and magnetic susceptibility are discussed at different temperature upon different magnetic field. The antiferromagnetic order is confirmed to be the ground state of the system, and it can be destroyed by a large magnetic field.


2012 ◽  
Vol 430-432 ◽  
pp. 1979-1983
Author(s):  
Wei Bang Feng ◽  
Xue Yang ◽  
Zhi Qiang Lv

Magneto-rheological elastomer( MR elastomer) is an emerging intelligent material made up of macromolecule polymer and magnetic particles. While a promising wide application it has in the fields of warships vibration controlling for its controllable mechanical, electrical and magnetic properties by external magnetic field, design and application of devices based on it are facing great limitations imposed by its poor performance in mechanical properties and magneto effect. Aiming at developing a practical MR elastomer, a new confecting method was proposed in this paper. Then, following this new method and using a specificly designed solidifying matrix, an amido- polyester MR elastomer was developed with its mechanical property systemically explored.


2014 ◽  
Vol 23 (01n02) ◽  
pp. 1450008
Author(s):  
Isaac Macwan ◽  
Zihe Zhao ◽  
Omar Sobh ◽  
Jinnque Rho ◽  
Ausif Mahmood ◽  
...  

Magnetotactic bacteria (MTB), discovered in early 1970s contain single-domain crystals of magnetite ( Fe 3 O 4) called magnetosomes that tend to form a chain like structure from the proximal to the distal pole along the long axis of the cell. The ability of these bacteria to sense the magnetic field for displacement, also called magnetotaxis, arises from the magnetic dipole moment of this chain of magnetosomes. In aquatic habitats, these organisms sense the geomagnetic field and traverse the oxic-anoxic interface for optimal oxygen concentration along the field lines. Here we report an elegant use of MTB where magnetotaxis of Magnetospirillum magneticum (classified as AMB-1) could be utilized for controlled navigation over a semiconductor substrate for selective deposition. We examined 50mm long coils made out of 18AWG and 20AWG copper conductors having diameters of 5mm, 10mm and 20mm for magnetic field intensity and heat generation. Based on the COMSOL simulations and experimental data, it is recognized that a compound semiconductor manufacturing technology involving bacterial carriers and carbon-based materials such as graphene and carbon nanotubes would be a desirable choice in the future.


1999 ◽  
Vol 32 (1-4) ◽  
pp. 289-294
Author(s):  
V. A. Lukshina ◽  
N. V. Dmitrieva ◽  
A. P. Potapov

For nanocrystalline alloy Fe73.5Cu1Nb3Si13.5B9 thermomechanical treatment was carried out simultaneously with nanocrystallizing annealing (1) or after it (2). It was shown that a change in magnetic properties for the case 1 is essentially greater than for the case 2. Complex effect of thermomagnetic and thermomechanical treatments on magnetic properties was studied in the above-mentioned nanocrystalline alloy as well as in the amorphous alloy Fe5Co70.6Si15B9.4., During the annealings both field and stress were aligned with the long side of the specimens. It was shown that the magnetic field, AC or DC, decreases an effect of loading. Moreover, the magnetic field, AC or DC, applied after stress-annealing can destroy the magnetic anisotropy already induced under load.


1994 ◽  
Vol 12 (1) ◽  
pp. 101-107 ◽  
Author(s):  
R. Bhagwandien ◽  
M.A. Moerland ◽  
C.J.G. Bakker ◽  
R. Beersma ◽  
J.J.W. Lagendijk

Sign in / Sign up

Export Citation Format

Share Document