AFM Observation and Application of Diamond-Like Carbon Films

1998 ◽  
Vol 12 (02n03) ◽  
pp. 107-113 ◽  
Author(s):  
Ning Chi ◽  
Hou Qingrun ◽  
J. Gao

The surface morphologies of pulsed laser deposited thick diamond-like carbon films were studied by optical microscopy and atomic force microscopy. The thick films had a much larger density of particulates and a much rougher surface than thin films. As a protective coating, a thin film was deposited on porous silicon. Two peaks (708 nm and 768 nm) were suppressed greatly while the peak 646 nm was not. The reason for these changes was discussed.

1997 ◽  
Vol 11 (11) ◽  
pp. 471-476 ◽  
Author(s):  
Ning Chi ◽  
Hou Qingrun ◽  
J. Gao ◽  
K. Y. Chan ◽  
D. L. Phillips

The surface morphologies of pulsed laser deposited ultra-thin diamond-like carbon films were studied by optical microscopy and atomic force microscopy. Off-axis deposited films had a larger size of particulates than on-axis deposited films. The root-mean-squared surface roughness was sensitive to deposition temperature. As a protective coating, the film was deposited on porous silicon. The surface morphology of the porous silicon changed considerably after carbon coating.


2014 ◽  
Vol 895 ◽  
pp. 407-410
Author(s):  
Yeo Lee Kong ◽  
S.V. Muniandy ◽  
M.S. Fakir ◽  
K. Sulaiman

Surface morphology of thin films can be efficiently characterized using power spectral density method. Spectral based parameters from surface models can then be linked to electrical conductivity of thin films used for fabricating organic photovoltaic devices. In this study, the surface morphologies of the organic thin films phthalocyanine tetrasulfonic acid tetrasodium (TsNiPc) are investigated using atomic force microscopy. The thin film samples are imaged at 40-minutes and 120-minutes after the solvent treatment. The spectral exponent β is determined from the slope of PSD log-log plot and the fractal dimension D of each film is calculated based on fractal relation β = 8 2D. The relationship between surface roughness and fractal dimension with respect to electrical properties of thin film is discussed.


2016 ◽  
Vol 30 (09) ◽  
pp. 1650145 ◽  
Author(s):  
Yunjie Zhang ◽  
Changle Chen ◽  
Jing Wang ◽  
Bingcheng Luo ◽  
Mengmeng Duan ◽  
...  

Bi4Ti3O[Formula: see text] (BIT) and Bi[Formula: see text]Nd[Formula: see text]Ti3O[Formula: see text] (BNT) thin films were deposited on Pt/Ti/SiO2/Si (100) substrates using pulsed laser deposition. The surface morphologies, ferroelectric domain structures and polarization switching were investigated by atomic force microscopy (AFM) and piezoelectric force microscopy (PFM). The phase and amplitude images of PFM show that the BIT and BNT thin films have clear domain structures. Comparison of the surface morphologies and domain structures indicates that the grain boundaries limit the shape of domain and affect the domain structure. The micro-electromechanical performance was characterized by the effective piezoelectric coefficient [Formula: see text] of the thin films. The result shows that the maximum effective [Formula: see text] value (100 pm/V) of BNT thin film is larger than that of BIT thin film (30 pm/V). This can be ascribed to BNT thin film with a preferred growth direction of [Formula: see text]-axis, resulting in effective enhancement of [Formula: see text]. Besides, all the thin films exhibit good optical transmittance in the range of 500–800 nm and the optical band gaps increase from 3.43 eV to 3.52 eV due to Nd doping.


2012 ◽  
Vol 1424 ◽  
Author(s):  
M. A. Mamun ◽  
A. H. Farha ◽  
Y. Ufuktepe ◽  
H. E. Elsayed-Ali ◽  
A. A. Elmustafa

ABSTRACTNanomechanical and structural properties of pulsed laser deposited niobium nitride thin films were investigated using X-ray diffraction, atomic force microscopy, and nanoindentation. NbN film reveals cubic δ-NbN structure with the corresponding diffraction peaks from the (111), (200), and (220) planes. The NbN thin films depict highly granular structure, with a wide range of grain sizes that range from 15-40 nm with an average surface roughness of 6 nm. The average modulus of the film is 420±60 GPa, whereas for the substrate the average modulus is 180 GPa, which is considered higher than the average modulus for Si reported in the literature due to pile-up. The hardness of the film increases from an average of 12 GPa for deep indents (Si substrate) measured using XP CSM and load control (LC) modes to an average of 25 GPa measured using the DCM II head in CSM and LC modules. The average hardness of the Si substrate is 12 GPa.


Author(s):  
Shunyu Chang ◽  
Yanquan Geng ◽  
Yongda Yan

AbstractAs one of the most widely used nanofabrication methods, the atomic force microscopy (AFM) tip-based nanomachining technique offers important advantages, including nanoscale manipulation accuracy, low maintenance cost, and flexible experimental operation. This technique has been applied to one-, two-, and even three-dimensional nanomachining patterns on thin films made of polymers, metals, and two-dimensional materials. These structures are widely used in the fields of nanooptics, nanoelectronics, data storage, super lubrication, and so forth. Moreover, they are believed to have a wide application in other fields, and their possible industrialization may be realized in the future. In this work, the current state of the research into the use of the AFM tip-based nanomachining method in thin-film machining is presented. First, the state of the structures machined on thin films is reviewed according to the type of thin-film materials (i.e., polymers, metals, and two-dimensional materials). Second, the related applications of tip-based nanomachining to film machining are presented. Finally, the current situation of this area and its potential development direction are discussed. This review is expected to enrich the understanding of the research status of the use of the tip-based nanomachining method in thin-film machining and ultimately broaden its application.


Author(s):  
Sudheer Neralla ◽  
Sergey Yarmolenko ◽  
Dhananjay Kumar ◽  
Devdas Pai ◽  
Jag Sankar

Alumina is a widely used ceramic material due to its high hardness, wear resistance and dielectric properties. The study of phase transformation and its correlation to the mechanical properties of alumina is essential. In this study, interfacial adhesion properties of alumina thin films are studied using cross-sectional nanoindentation (CSN) technique. Alumina thin films are deposited at 200 and 700 °C, on Si (100) substrates with a weak Silica interface, using pulsed laser deposition (PLD) process. Effect of annealing on the surface morphology of the thin films is studied using atomic force microscopy. Xray diffraction studies revealed that alumina thin films are amorphous in nature at 200 °C and polycrystalline with predominant gamma alumina phase at 700 °C.


2012 ◽  
Vol 151 ◽  
pp. 314-318
Author(s):  
Ching Fang Tseng ◽  
Cheng Hsing Hsu ◽  
Chun Hung Lai

This paper describes microstructure characteristics of MgAl2O4 thin films were deposited by sol-gel method with various preheating temperatures and annealing temperatures. Particular attention will be paid to the effects of a thermal treatment in air ambient on the physical properties. The annealed films were characterized using X-ray diffraction. The surface morphologies of treatment film were examined by scanning electron microscopy and atomic force microscopy. At a preheating temperature of 300oC and an annealing temperature of 700oC, the MgAl2O4 films with 9 μm thickness possess a dielectric constant of 9 at 1 kHz and a dissipation factor of 0.18 at 1 kHz.


2012 ◽  
Vol 1432 ◽  
Author(s):  
M. Baseer Haider ◽  
M. F. Al-Kuhaili ◽  
S. M. A. Durrani ◽  
Imran Bakhtiari

Abstract:Gallium nitride thin films were grown by pulsed laser deposition. Subsequently, post-growth annealing of the samples was performed at 400, and 600 oC in the nitrogen atmosphere. Surface morphology of the as-grown and annealed samples was performed by atomic force microscopy, surface roughness of the films improved after annealing. Chemical analysis of the samples was performed using x-ray photon spectroscopy, stoichiometric Gallium nitride thin films were obtained for the samples annealed at 600 oC. Optical measurements of the samples were performed to investigate the effect of annealing on the band gap and optical constants the films.


2000 ◽  
Vol 658 ◽  
Author(s):  
Trong-Duc Doan ◽  
Cobey Abramowski ◽  
Paul A. Salvador

ABSTRACTThin films of NdNiO3 were grown using pulsed laser deposition on single crystal substrates of [100]-oriented LaAlO3 and SrTiO3. X-ray diffraction and reflectivity, scanning electron microscopy, and atomic force microscopy were used to characterize the chemical, morphological and structural traits of the thin films. Single-phase epitaxial films are grown on LaAlO3 and SrTiO3 at 625°C in an oxygen pressure of 200 mTorr. At higher temperatures, the films partially decompose to Nd2NiO4 and NiO. The films are epitaxial with the (101) planes (orthorhombic Pnma notation) parallel to the substrate surface. Four in-plane orientational variants exist that correspond to the four 90° degenerate orientations of the film's [010] with respect to the in-plane substrate directions. Films are observed to be strained in accordance with the structural mismatch to the underlying substrate, and this leads, in the thinnest films on LaAlO3, to an apparent monoclinic distortion to the unit cell.


2018 ◽  
Vol 9 ◽  
pp. 686-692 ◽  
Author(s):  
Daiki Katsube ◽  
Hayato Yamashita ◽  
Satoshi Abo ◽  
Masayuki Abe

We have designed and developed a combined system of pulsed laser deposition (PLD) and non-contact atomic force microscopy (NC-AFM) for observations of insulator metal oxide surfaces. With this system, the long-period iterations of sputtering and annealing used in conventional methods for preparing a metal oxide film surface are not required. The performance of the combined system is demonstrated for the preparation and high-resolution NC-AFM imaging of atomically flat thin films of anatase TiO2(001) and LaAlO3(100).


Sign in / Sign up

Export Citation Format

Share Document