scholarly journals A Load-Balancing Energy Consumption Minimization Scheme in 5G Heterogeneous Small Cell Wireless Networks Under Coverage Probability Analysis

Author(s):  
Zhu Xiao ◽  
Shuangchun Li ◽  
Xiaochun Chen ◽  
Dong Wang ◽  
Wenjie Chen

Heterogeneous small cell networks (HSCN), as a promising paradigm to increase end-user data rates and improve the overall capacity, is expected to be a key cellular architecture in 5G wireless networks. However, energy consumed in HSCN is considerable due to the massive use of small cells. In this paper, we investigate the energy consumption issue which stems from the enormous number of running small cell base stations (SBSs) deploying in the HSCN. We first propose power consumption models so as to characterize the active state and the idle state of SBSs, respectively. Then two sleep modes for SBSs tier, i.e. random sleep mode and load-awareness dynamic sleep mode, are proposed. The random sleep is designed based on a binomial distribution of the SBS operation probability. Through the analysis on activeness of SBSs, we define the operation probability for the SBS applying the proposed dynamic sleep mode is associated to its traffic load level. The closed-form expressions of success probability for coverage, which is used to decide whether an active user can connect to a SBS successfully, are derived for the proposed sleep modes. Energy consumption minimizations are presented for the two proposed sleep modes under the success probability constraint. Simulation results prove the effectiveness of the proposed two sleep modes. Different energy saving gains can be achieved via using of the energy saving strategy. The superior of the dynamic sleep mode by comparing the random sleep is also verified in terms of energy consumption, success probability and power efficiency.

2021 ◽  
Author(s):  
Mobasshir Mahbub ◽  
Bobby Barua

Abstract Advancements of cellular networks such as 4G and 5G proposed the collaboration of small-cell technologies in mobile networks and constructed a heterogeneous network (HetNet) for collaborative connectivity. There are many benefits of small-cell-based collective communication such as the increase of device capability in indoor/outdoor locations, enhancement of wireless coverage, improved signal efficiency, lower implementation costs of gNB (Next-generation Base Station introduced in 5G), etc. The integration of small-cells by deploying low-power BSs (base stations) in conventional macro-gNBs was investigated as a convenient and economical way of raising the potentials of a cellular network with high demand from consumers. The fusion of small-cells with macro-cells offers increased coverage and capacity for heterogeneous networks. Therefore, the research aimed to realize the performance of a small-cell deployed under a macro-cell in a two-tier heterogeneous network. The research first modified the reference equation for measuring the received power by introducing the transmitter and receiver gain. The paper then measured the SINR, throughput, spectral efficiency, and power efficiency for both downlink and uplink by empirical simulation. The research further enlisted the notable outcomes after examining the simulation results and discussed some relevant research scopes in the concluding sections of the paper.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Sai Zou ◽  
Fan Yang ◽  
Yulian Tang ◽  
Lei Xiao

As the current network is designed for peak loads, it results in insufficient resource utilization and energy waste. Virtualized technology makes it possible that intelligent energy perception network could be deployed and resource sharing could become an effective energy saving technology. How to make more small cells into sleeping state for energy saving in ultradense small cell system has become a research hot spot. Based on the mapping feature of virtualized network, a new wireless resource mapping algorithm for saving energy in ultradense small cells has been put forward when wireless resource amount is satisfied in every small cell. First of all, the method divides the virtual cells. Again through the alternate updating between small cell mapping and wireless resource allocation, least amount of small cells is used and other small cells turn into sleeping state on the premise of guaranteeing users’ QoS. Next, the energy consumption of the wireless access system, wireless resource utilization, and the convergence of the proposed algorithm are analyzed in theory. Finally, the simulation results demonstrate that the algorithm can effectively reduce the system energy consumption and required wireless resource amount under the condition of satisfying users’ QoS.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1493
Author(s):  
Ayesha Ayub ◽  
Sobia Jangsher ◽  
M. Majid Butt ◽  
Abdur Rahman Maud ◽  
Farrukh A. Bhatti

Small cells deliver cost-effective capacity and coverage enhancement in a cellular network. In this work, we present the interplay of two technologies, namely Wi-Fi offloading and small-cell cooperation that help in achieving this goal. Both these technologies are also being considered for 5G and B5G (Beyond 5G). We simultaneously consider Wi-Fi offloading and small-cell cooperation to maximize average user throughput in the small-cell network. We propose two heuristic methods, namely Sequential Cooperative Rate Enhancement (SCRE) and Sequential Offloading Rate Enhancement (SORE) to demonstrate cooperation and Wi-Fi offloading, respectively. SCRE is based on cooperative communication in which a user data rate requirement is satisfied through association with multiple small-cell base stations (SBSs). However, SORE is based on Wi-Fi offloading, in which users are offloaded to the nearest Wi-Fi Access Point and use its leftover capacity when they are unable to satisfy their rate constraint from a single SBS. Moreover, we propose an algorithm to switch between the two schemes (cooperation and Wi-Fi offloading) to ensure maximum average user throughput in the network. This is called the Switching between Cooperation and Offloading (SCO) algorithm and it switches depending upon the network conditions. We analyze these algorithms under varying requirements of rate threshold, number of resource blocks and user density in the network. The results indicate that SCRE is more beneficial for a sparse network where it also delivers relatively higher average data rates to cell-edge users. On the other hand, SORE is more advantageous in a dense network provided sufficient leftover Wi-Fi capacity is available and more users are present in the Wi-Fi coverage area.


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In LTE-A (LTE-Advanced), the access network cell formation is an integrated form of outdoor unit and indoor unit. With the indoor unit extension the access network becomes heterogeneous (HetNet). HetNet is a straightforward way to provide quality of service (QoS) in terms better network coverage and high data rate. Although, due to uncoordinated, densely deployed small cells large interference may occur, particularly in case of operating small cells within the spectrum of macro base stations (MBS). This paper probes the impact of small cell on the outage probability and the average network throughput enhancement. The positions of the small cells are retained random and modelled with homogeneous Poisson Point Process (PPP) and Matérn Cluster process (MCP). The paper provides an analytic form which permits to compute the outage probability, including the mostly applied fast fading channel types. Furthermore, simulations are evaluated in order to calculate the average network throughput for both random processes. Simulation results highlights that the network throughput remarkably grows due to small cell deployment.</div>


MACRo 2015 ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 135-144
Author(s):  
Péter Ratkóczy ◽  
Attila Mitcsenkov

AbstractThe experienced mobile traffic increase in the recent years made traffic capacity the bottleneck instead of the coverage constraints, calling for significantly higher density of the base stations. Heterogeneous radio access networks (HetNet) provide a possible solution to this problem, combining various wireless technologies. In this paper we investigated the joint dimensioning of the co-existent radio access networks, the relation between the required macro and small cell densities to meet a certain traffic demand, and compared the two main, competing technological solutions, namely small cells and Wi-Fi, suitable to complement an LTE (macrocell) network.


Author(s):  
Alexandra Bousia ◽  
Elli Kartsakli ◽  
Angelos Antonopoulos ◽  
Luis Alonso ◽  
Christos Verikoukis

Reducing the energy consumption in wireless networks has become a significant challenge, not only because of its great impact on the global energy crisis, but also because it represents a noteworthy cost for telecommunication operators. The Base Stations (BSs), constituting the main component of wireless infrastructure and the major contributor to the energy consumption of mobile cellular networks, are usually designed and planned to serve their customers during peak times. Therefore, they are more than sufficient when the traffic load is low. In this chapter, the authors propose a number of BSs switching off algorithms as an energy efficient solution to the problem of redundancy of network resources. They demonstrate via analysis and by means of simulations that one can achieve reduction in energy consumption when one switches off the unnecessary BSs. In particular, the authors evaluate the energy that can be saved by progressively turning off BSs during the periods when traffic decreases depending on the traffic load variations and the distance between the BS and their associated User Equipments (UEs). In addition, the authors show how to optimize the energy savings of the network by calculating the most energy-efficient combination of switched off and active BSs.


Author(s):  
L.F. Pau

As 3G, HSPDA and already now LTE wireless networks become ever more pervasive, especially for wireless high data rate and Internet traffic (>100 Mbps), increasing focus is given on ways to offload access by re-utilizing WiFi access points available in-doors (offices, homes), or installing such access points outdoors in/alongside high demand density public areas (hot spots, public areas, road traffic lanes, etc..). In view of the relative much higher WiFi access node power consumption and much smaller coverage compatible with interference reduction, the WiFi off-loading access may have a significant negative impact on energy consumption and emissions per user. The paper builds on earlier extensive work on the modeling of 3G or LTE wireless infrastructure energy consumption on an incremental basis per new user. It addresses the questions of the best mix between LTE cellular base stations and WiFi off-load access nodes from the energy/emissions perspective. Detailed sub-system model and design improvements are carried out on a continuous basis in collaboration with industry.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaodong Xu ◽  
Chunjing Yuan ◽  
Jianhui Li ◽  
Huixin Zhang ◽  
Xiaofeng Tao

The small cell is treated as a promising proposition to provide hot spot capacity and higher data rates. However, even with dense small cell deployment scenario, the heavy traffic load pressure and low energy efficiency in the small cell heterogeneous network (HetNet) still exist. Therefore, how to make the best use of densely deployed small cells under HetNet environments becomes the focus of researches. Offloading provides a feasible solution to promote cooperation between macrocells and small cells for user traffic supporting. In this paper, we propose the reverse auction based Green Offloading (GO) scheme for energy efficiency improvements. The proposed GO scheme employs the reverse auction theory to handle the offloading decision process, aiming at maximizing the system energy efficiency under the constraints of user Quality of Service (QoS) requirements, bandwidth, and transmission power limitations. Moreover, the reverse auction model gives the facility of multicell coordination transmissions with multiple winners situation. The energy efficiency optimization problem with constraints is solved by Dynamic Programming method with Karush-Kuhn-Tucker (KKT) conditions. The Individual Rationality and Truthfulness of the reverse auction model are also proved. By comparing the energy efficiency performances of the proposed GO scheme with current works within the Long Term Evolution-Advanced (LTE-A) system downlink scenario, simulation results show the improvements of the proposed GO scheme.


Sign in / Sign up

Export Citation Format

Share Document