A LOW POWER CASCADED FEED-FORWARD DELTA-SIGMA MODULATOR FOR RF WIRELESS APPLICATIONS

2009 ◽  
Vol 18 (02) ◽  
pp. 407-429 ◽  
Author(s):  
SHAILESH B. NERURKAR ◽  
KHALID H. ABED

This paper presents a design of a novel cascaded third-order feed-forward delta-sigma analog-to-digital converter (ADC). This ADC is realized using fully differential switched capacitor architecture and produces a 12-bit resolution at a data output rate (DOR) of 2.5 MS/s for RF wireless applications. The delta-sigma modulator consists of a second-order single-bit feed-forward modulator cascaded with a multi-bit first-order modulator. The cascaded feed-forward third-order (2-1) ADC is simulated using Matlab and Simulink. The delta-sigma modulator was designed using Cadence Virtuoso in TSMC 0.18 μm CMOS technology. The power consumption of the designed modulator is 12.74 mW, and the resolution is 11.85 bits for an over-sampling ratio (M = 32). The figure of merit is 1.38 pJ at a sample rate of 80 MS/s. The proposed delta-sigma modulator is compared with other state-of-the-art low-pass delta-sigma modulators in terms of their speed, power, DOR, and the proposed modulator has one of the lowest power consumption.

2019 ◽  
Vol 29 (04) ◽  
pp. 2050056
Author(s):  
Sahel Javahernia ◽  
Esmaeil Najafi Aghdam ◽  
Pooya Torkzadeh

In this paper, a low-power second-order feed-forward capacitor-structure continuous-time [Formula: see text] modulator with a 4-bit asynchronous successive approximation register (SAR) quantizer is presented. Through the utilization capacitor structure in the proposed modulator, first, the summation node of the integrators’ outputs and the feed-forward signals is implemented within the second integrator to reduce power consumption by eliminating an active summing amplifier. Second, the proposed architecture can compensate for the quantizer delay without using any excess inner digital to analog converter (DAC). In this design, the modulator applies two different low-power operational amplifiers. These advantages cause the modulator to consume very low power and achieve a favorable figure of merit (FOM) value. In fact, in this paper, the combination of the previously reported methods and designs and doing required reforms has led to a new design with better performance, especially in power reduction. The designed modulator which is simulated using 0.18[Formula: see text][Formula: see text]m CMOS technology achieves 95.98[Formula: see text]dB peak signal-to-noise and distortion (SNDR) for 10[Formula: see text]KHz signal bandwidth and dissipates 44[Formula: see text][Formula: see text]w while its FOM is obtained about 43 fJ/conv.-step.


2017 ◽  
Vol 27 (03) ◽  
pp. 1850044 ◽  
Author(s):  
Alireza Shamsi ◽  
Esmaeil Najafi Aghdam

Power consumption and bandwidth are two of the most important parameters in design of low power wideband modulators as power consumption is growing with the increase in bandwidth. In this study, a multi bit wideband low-power continuous time feed forward quadrature delta sigma modulator (CT-FF-QDSM) is designed for WLAN receiver applications by eliminating adders from modulator structure. In this method, a real modulator is designed and its excess loop delay (ELD) is compensated, then, it is converted into a quadrature structure by applying the complex coefficient to loop filter. Complex coefficients are extracted by the aid of a genetic algorithm to further improve signal to noise ratio (SNR) for bandwidth. One of the disadvantages of CT-FF-QDSM is the adders of loop filters which are power hungry and reduce the effective loop gain. Therefore, the adders have been eliminated while the transfer function is intact in the final modulator. The system level SNR of the proposed modulator is 62.53[Formula: see text]dB using OSR of 12. The circuit is implemented in CMOSTSMC180nm technology. The circuit levels SNR and power consumption are 54[Formula: see text]dB and 13.5[Formula: see text]mW, respectively. Figure of Merit (FOM) obtained from the proposed modulator is about 0.824 (pj/conv) which is improved (by more than 40%) compared to the previous designs.


2013 ◽  
Vol 6 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Andrea Malignaggi ◽  
Amin Hamidian ◽  
Georg Boeck

The present paper presents a fully differential 60 GHz four stages low-noise amplifier for wireless applications. The amplifier has been optimized for low-noise, high-gain, and low-power consumption, and implemented in a 90 nm low-power CMOS technology. Matching and common-mode rejection networks have been realized using shielded coplanar transmission lines. The amplifier achieves a peak small-signal gain of 21.3 dB and an average noise figure of 5.4 dB along with power consumption of 30 mW and occupying only 0.38 mm2pads included. The detailed design procedure and the achieved measurement results are presented in this work.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6456
Author(s):  
Fernando Cardes ◽  
Nikhita Baladari ◽  
Jihyun Lee ◽  
Andreas Hierlemann

This article reports on a compact and low-power CMOS readout circuit for bioelectrical signals based on a second-order delta-sigma modulator. The converter uses a voltage-controlled, oscillator-based quantizer, achieving second-order noise shaping with a single opamp-less integrator and minimal analog circuitry. A prototype has been implemented using 0.18 μm CMOS technology and includes two different variants of the same modulator topology. The main modulator has been optimized for low-noise, neural-action-potential detection in the 300 Hz–6 kHz band, with an input-referred noise of 5.0 μVrms, and occupies an area of 0.0045 mm2. An alternative configuration features a larger input stage to reduce low-frequency noise, achieving 8.7 μVrms in the 1 Hz–10 kHz band, and occupies an area of 0.006 mm2. The modulator is powered at 1.8 V with an estimated power consumption of 3.5 μW.


Author(s):  
Eka Fitrah Pribadi ◽  
Rajeev Kumar Pandey ◽  
Paul C.-P. Chao

Abstract A high-resolution, low offset delta-sigma analog to digital converter for detecting photoplethysmography (PPG) signal is presented in this study. The PPG signal is a bio-optical signal incorporated with heart functionality and located in the range of 0.1–10 Hz. The location to get PPG signal is on a pulsating artery. Thus the delta-sigma analog-to-digital (DS ADC) converter is designed specifically in that range. However, the DS ADC circuitry suffers from 1/f noise under 10 Hz frequency range. A chopper based operational amplifier is implemented in DS ADC to push the 1/f noise into high-frequency noise. The dc offset of the operational amplifier is also pushed to the high-frequency region. The DS ADC circuitry consists of a second-order continuous-time delta-sigma modulator. The delta-sigma modulator circuitry is designed and simulated using TSMC 180 nm technology. The continuous-time delta-sigma modulator active area layout is 746μm × 399 μm and fabricated using TSMC 180 nm technology. It operates in 100 Hz bandwidth and 4096 over-sampling ratios. The SFDR of the circuit is above 70 dB. The power consumption of the delta-sigma modulator is 35.61μW. The simulation is performed in three different kinds of corner, SS, TT, and FF corner, to guarantee the circuitry works in different conditions.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2033
Author(s):  
Ahmed Elgreatly ◽  
Ahmed Dessouki ◽  
Hassan Mostafa ◽  
Rania Abdalla ◽  
El-sayed El-Rabaie

Time-based analog-to-digital converter is considered a crucial part in the design of software-defined radio receivers for its higher performance than other analog-to-digital converters in terms of operation speed, input dynamic range and power consumption. In this paper, two novel voltage-to-time converters are proposed at which the input voltage signal is connected to the body terminal of the starving transistor rather than its gate terminal. These novel converters exhibit better linearity, which is analytically proven in this paper. The maximum linearity error is reduced to 0.4%. In addition, the input dynamic range of these converters is increased to 800 mV for a supply voltage of 1.2 V by using industrial hardware-calibrated TSMC 65 nm CMOS technology. These novel designs consist of only a single inverter stage, which results in reducing the layout area and the power consumption. The overall power consumption is 18 μW for the first proposed circuit and 15 μW for the second proposed circuit. The novel converter circuits have a resolution of 5 bits and operate at a maximum clock frequency of 500 MHz.


Sign in / Sign up

Export Citation Format

Share Document