Fast Transaction-Level Model for Direct Memory Access Controller

2019 ◽  
Vol 28 (04) ◽  
pp. 1950059
Author(s):  
Mona Safar ◽  
Magdy A. El-Moursy ◽  
Ahmed Tarek ◽  
Ahmed Emad ◽  
Ahmed Hesham ◽  
...  

Transaction-Level Modeling (TLM) has been widely used in system-level design in the past few years. Simulation speed of Virtual Platforms (VPs) depends mainly on the transactions which are initiated by the Programmer’s View (PV) models of the VP devices. PV models are required to run at highest simulation speed. Data bus width as a hardware (HW) parameter should not reduce simulation speed of the modeled transactions. Furthermore, HW-related parameters should only be accounted for when considering timing of the models. A fast SystemC-TLM model is developed for the widely used ARM PrimeCell PL080 DMAC IP. The performance of the proposed model is validated against a developed RTL model for the same device. The effect of the transactions granularity on simulation speed is determined. Different programmed transfers are simulated and compared with open-source Quick Emulator (QEMU)-based models. The developed model is compared with the developed RTL, the open-source QEMU model, and the existing ARM Fast Model (AFM). It is shown that simulation time of the developed model is reduced by two orders of magnitude as compared to the other existing models.

Model based verification has been the bedrock of electronic design automation. Over the past several years, system modeling has evolved to keep up with improvements in process technology fueled by Moore’s law. Modeling has evolved to keep up with the complexity of applications resulting in various levels of abstractions. The design automation industry has evolved from transistor level modeling to gate level and eventually to register transfer level (RTL). These models have been used for simulation based verification, formal verification and semiformal verification. With the advent of multicore systems, RTL modeling and verification are no longer feasible. Furthermore, the software content in most modern designs is growing rapidly. The increasing software content, along with the size, complexity and heterogeneity of multicore systems, makes RTL simulation extremely slow for any reasonably sized system. This has made system verification the most serious obstacle to time to market. The root of the problem is the signal-based communication modeling in RTL. In any large design there are hundreds of signals that change their values frequently during the execution of the RTL model. Every signal toggle causes the simulator to stop and reevaluate the state of the system. Therefore, RTL simulation becomes painfully slow. To overcome this problem, designers are increasingly resorting to modeling such complex systems at higher levels of abstraction than RTL. Transaction level models (TLMs) have emerged as the next level of abstraction for system design. However, well defined TLM semantics are needed for design automation at the transaction level. In this chapter, we present transaction level model automation for multicore systems based on well defined TLM semantics. TLMs replace the traditional signal toggling model of system communication with function calls, thereby increasing simulation speed. TLMs are already being used for executable specification of multicore designs, for analysis, fast simulation, and debugging. They play an important role in early application development and debugging before the final prototype has been implemented. We discuss essential issues in TLM automation and also provide an understanding of the basic building blocks of TLMs.


2021 ◽  
Vol 11 (1) ◽  
pp. 6719-6723
Author(s):  
H. Mestiri ◽  
I. Barraj ◽  
M. Machhout

The increasing complexity of the cryptographic modeling and security simulation of the Advanced Encryption Standard (AES) necessitate fast modeling and simulation security environment. The SystemC language is used in Electronic System Level (ESL) that allows cryptographic models to achieve high security and modeling simulation speed. Yet, the use of SystemC in the security simulation requires modifications of the original code which increases the modeling complexity. The Aspect-Oriented Programming (AOP) can be used in the cryptographic modeling and security simulations without any code modification. In this paper, a new AES SystemC model using the AOP technique is presented. A functional verification environment is proposed to test the functionality of the AES SystemC AOP model, the impact of AOP on simulation time, and the size of the executable files. The design of the AES model is developed with the weaving of all modules by AspectC++ which is an AOP language. The Simulation results show the efficiency of the proposed AES model and the uses of the AOP technique do not have a significant impact on simulation time or on the size of the executable file.


Author(s):  
William Krakow

In the past few years on-line digital television frame store devices coupled to computers have been employed to attempt to measure the microscope parameters of defocus and astigmatism. The ultimate goal of such tasks is to fully adjust the operating parameters of the microscope and obtain an optimum image for viewing in terms of its information content. The initial approach to this problem, for high resolution TEM imaging, was to obtain the power spectrum from the Fourier transform of an image, find the contrast transfer function oscillation maxima, and subsequently correct the image. This technique requires a fast computer, a direct memory access device and even an array processor to accomplish these tasks on limited size arrays in a few seconds per image. It is not clear that the power spectrum could be used for more than defocus correction since the correction of astigmatism is a formidable problem of pattern recognition.


Author(s):  
Issa A.D. Nesnas ◽  
Lorraine M. Fesq ◽  
Richard A. Volpe

Abstract Purpose of Review The purpose of this review is to highlight space autonomy advances across mission phases, capture the anticipated need for autonomy and associated rationale, assess state of the practice, and share thoughts for future advancements that could lead to a new frontier in space exploration. Recent Findings Over the past two decades, several autonomous functions and system-level capabilities have been demonstrated and used in spacecraft operations. In spite of that, spacecraft today remain largely reliant on ground in the loop to assess situations and plan next actions, using pre-scripted command sequences. Advances have been made across mission phases including spacecraft navigation; proximity operations; entry, descent, and landing; surface mobility and manipulation; and data handling. But past successful practices may not be sustainable for future exploration. The ability of ground operators to predict the outcome of their plans seriously diminishes when platforms physically interact with planetary bodies, as has been experienced in two decades of Mars surface operations. This results from uncertainties that arise due to limited knowledge, complex physical interaction with the environment, and limitations of associated models. Summary Robotics and autonomy are synergistic, wherein robotics provides flexibility, autonomy exercises it to more effectively and robustly explore unknown worlds. Such capabilities can be substantially advanced by leveraging the rapid growth in SmallSats, the relative accessibility of near-Earth objects, and the recent increase in launch opportunities.


Author(s):  
Daniel Tang ◽  
Mike Evans ◽  
Paul Briskham ◽  
Luca Susmel ◽  
Neil Sims

Self-pierce riveting (SPR) is a complex joining process where multiple layers of material are joined by creating a mechanical interlock via the simultaneous deformation of the inserted rivet and surrounding material. Due to the large number of variables which influence the resulting joint, finding the optimum process parameters has traditionally posed a challenge in the design of the process. Furthermore, there is a gap in knowledge regarding how changes made to the system may affect the produced joint. In this paper, a new system-level model of an inertia-based SPR system is proposed, consisting of a physics-based model of the riveting machine and an empirically-derived model of the joint. Model predictions are validated against extensive experimental data for multiple sets of input conditions, defined by the setting velocity, motor current limit and support frame type. The dynamics of the system and resulting head height of the joint are predicted to a high level of accuracy. Via a model-based case study, changes to the system are identified, which enable either the cycle time or energy consumption to be substantially reduced without compromising the overall quality of the produced joint. The predictive capabilities of the model may be leveraged to reduce the costs involved in the design and validation of SPR systems and processes.


2021 ◽  
Vol 11 (6) ◽  
pp. 2850
Author(s):  
Dalibor Dobrilovic ◽  
Vladimir Brtka ◽  
Zeljko Stojanov ◽  
Gordana Jotanovic ◽  
Dragan Perakovic ◽  
...  

The growing application of smart manufacturing systems and the expansion of the Industry 4.0 model have created a need for new teaching platforms for education, rapid application development, and testing. This research addresses this need with a proposal for a model of working environment monitoring in smart manufacturing, based on emerging wireless sensor technologies and the message queuing telemetry transport (MQTT) protocol. In accordance with the proposed model, a testing platform was developed. The testing platform was built on open-source hardware and software components. The testing platform was used for the validation of the model within the presented experimental environment. The results showed that the proposed model could be developed by mainly using open-source components, which can then be used to simulate different scenarios, applications, and target systems. Furthermore, the presented stable and functional platform proved to be applicable in the process of rapid prototyping, and software development for the targeted systems, as well as for student teaching as part of the engineering education process.


Author(s):  
S. Elavaar Kuzhali ◽  
D. S. Suresh

For handling digital images for various applications, image denoising is considered as a fundamental pre-processing step. Diverse image denoising algorithms have been introduced in the past few decades. The main intent of this proposal is to develop an effective image denoising model on the basis of internal and external patches. This model adopts Non-local means (NLM) for performing the denoising, which uses redundant information of the image in pixel or spatial domain to reduce the noise. While performing the image denoising using NLM, “denoising an image patch using the other noisy patches within the noisy image is done for internal denoising and denoising a patch using the external clean natural patches is done for external denoising”. Here, the selection of optimal block from the entire datasets including internal noisy images and external clean natural images is decided by a new hybrid optimization algorithm. The two renowned optimization algorithms Chicken Swarm Optimization (CSO), and Dragon Fly Algorithm (DA) are merged, and the new hybrid algorithm Rooster-based Levy Updated DA (RLU-DA) is adopted. The experimental results in terms of some relevant performance measures show the promising results of the proposed model with remarkable stability and high accuracy.


Author(s):  
Xiaolin Wang ◽  
Hui Zhang ◽  
Lili Zheng

Uranium-ceramic nuclear fuels can be fabricated through pyrolysis-based materials processing technique. This technique requires lower energy compared to sintering route. During the fabrication process, the source material changes composition continuously and chemical reactions and transport phenomena vary accordingly. Therefore, to obtain such nuclear fuel materials with high uniformity of microstructure/species without crack, transport phenomena in the material processing needs to be better understood. A system-scale model has been developed to account for the pyrolysis-based uranium-ceramic nuclear material processing in our prior work. In this study, a pore-scale numerical model based on Smoothed Particle Hydrodynamics (SPH) will be described for modeling the synthesis of SiC matrix and U3O8. The system-level model provides thermal boundary conditions to the pore-level model. The microstructure and compositions of the produced composites will be studied. Since the control of process temperature plays an important role in the material quality, the effects of heating rate and U3O8 particle size and volume on species uniformity and microstructure are investigated.


Solar Energy ◽  
2019 ◽  
Vol 177 ◽  
pp. 576-594 ◽  
Author(s):  
M. Cagnoli ◽  
A. de la Calle ◽  
J. Pye ◽  
L. Savoldi ◽  
R. Zanino

2006 ◽  
Vol 4 (4) ◽  
pp. 511-515 ◽  
Author(s):  
Teemu Vesanen ◽  
Krzysztof Klobut ◽  
Jari Shemeikka

Due to constantly increasing electricity consumption, networks are becoming overloaded and unstable. Decentralization of power generation using small-scale local cogeneration plants becomes an interesting option to improve economy and energy reliability of buildings in terms of both electricity and heat. It is expected that stationary applications in buildings will be one of the most important fields for fuel cell systems. In northern countries, like Finland, efficient utilization of heat from fuel cells is feasible. Even though the development of some fuel cell systems has already progressed to a field trial stage, relatively little is known about the interaction of fuel cells with building energy systems during a dynamic operation. This issue could be addressed using simulation techniques, but there has been a lack of adequate simulation models. International cooperation under IEA/ECBCS/Annex 42 aims at filling this gap, and the study presented in this paper is part of this effort. Our objective was to provide the means for studying the interaction between a building and a fuel cell system by incorporating a realistic fuel cell model into a building energy simulation. A two-part model for a solid-oxide fuel cell system has been developed. One part is a simplified model of the fuel cell itself. The other part is a system level model, in which a control volume boundary is assumed around a fuel cell power module and the interior of it is regarded as a “black box.” The system level model has been developed based on a specification defined within Annex 42. The cell model (programed in a spreadsheet) provides a link between inputs and outputs of the black box in the system model. This approach allows easy modifications whenever needed. The system level model has been incorporated into the building simulation tool IDA-ICE (Indoor Climate and Energy) using the neutral model format language. The first phase of model implementation has been completed. In the next phase, model validation will continue. The final goal is to create a comprehensive but flexible model, which could serve as a reliable tool to simulate the operation of different fuel cell systems in different buildings.


Sign in / Sign up

Export Citation Format

Share Document