Electronically Tunable Mixed Mode Quadrature Oscillator Using DX-MOCCII

Author(s):  
Ashok Kumar ◽  
Ajay Kumar Kushwaha ◽  
Sajal K. Paul

A new electronically tunable quadrature oscillator is presented using a biquad band pass filter. The new band pass filter is designed using two dual X second-generation multi-output current conveyors (DX-MOCCIIs), two grounded capacitors, two grounded resistors and one NMOS transistor working in the triode region. It is used to design a four-phase voltage and three-phase current output quadrature oscillator simultaneously. The frequency of the oscillator can be tuned externally through the MOS gate voltage without affecting the condition of oscillation. The phase noise, frequency stability and nonideality analysis are given. The functionality of the oscillator circuit has been confirmed by SPICE simulation and also hardware realization using commercially available IC AD844.

2021 ◽  
Vol 11 (16) ◽  
pp. 7357
Author(s):  
San-Fu Wang ◽  
Hua-Pin Chen ◽  
Yitsen Ku ◽  
Fang-Yu Liu

This study presents an electronically tunable configuration for the design of a voltage-mode (VM) biquad with four input terminals and three output terminals. The proposed circuit employs four operational transconductance amplifiers (OTAs) and two grounded capacitors. Depending on the selections of the four input voltage signals, all the standard filtering functions can be realized. The proposed configuration simultaneously provides VM inverting band-pass, non-inverting low-pass, and non-inverting band-reject filtering functions without any component-matching choices. It offers the features of a resistorless structure, high-input impedance, electronic control of the pole frequency and quality factor, and low active and passive sensitivities. The measured power dissipation of the biquad is 0.96 W under 32 mA constant output current. The measured 1 dB power gain compression point of the output inverting band-pass filter is −7 dBm. The measured value of the third-order intercept point is 5.136 dBm, and the measured value of the third-order intermodulation distortion is −50.83 dBc. Moreover, the measured value of the spurious-free dynamic range is 53.49 dB, and the figure-of-merit of the biquad is 268.75 × 103. In addition, an electronically controllable quadrature oscillator (QO) with amplitude of output current can be realized using the proposed biquad. The proposed electronically controllable QO can provide an amplitude modulation signal or an amplitude shift keying signal, and is widely applied in signal processing systems and electronic communication systems. PSpice simulations and experimental results are accomplished.


Author(s):  
Dr. D. D. Mulajkar ◽  

A new electronically tunable current-mode third order filter is proposed in this paper. OP-AMP is used as an active building block. With current input the filter can realize band pass responses in current mode. The filter circuit realizes calculated transfer function. The other attractive features of the filter are a) Employment of minimum active and passive elements b) Responses are electronically tunable c) Low active and passive sensitivities d) Suitable for high frequency operation e) Ideal for integrated circuit implementation.


Author(s):  
Adiananda Adiananda ◽  
Agus Kiswantono ◽  
Amirullah Amirullah

<p>The paper proposed power quality enhancement on three phase grid of point common coupling (PCC) bus due to integration of multi units of photovoltaic (PV) to 380 volt (phase-phase) 50 Hz low voltage distribution network under variable temperature and irradiance level. The band pass filter models (single tuned and double tuned) were installed to improvement power quality on the conditions i.e. without filter, with single tuned filter, and with double tuned filter. Multi units of PV generator without filter, with single tuned, and with double tuned filter at all temperatures and irradiance levels resulted in relatively stable phase voltage (308 and 310 volt), so able to generate an unbalanced voltage of 0%. The maximum phase current for the system without filter at all temperatures and radiation levels of 9.8, 12.5, and 10 ampere respectively, resulted in an unbalanced current of 16.10% . Under the same condition, single tuned and double tuned filters were able to balance phase current to 10.45 A and 10.44 ampere respectively, resulting in an unbalanced current of 0%. Implementation of single tuned and double tuned filters was able to reduce unbalance current according to ANSI/IEEE 241-1990. At constant temperature and irradiance increased, both average voltage and current harmonics also increased. Double tuned active filter was the most effective to suppress the 11th and 13th harmonics so that capable to migitate average voltage and current harmonics better than system using single tuned filter which could only reduce 5th harmonic within IEEE 519-1992.</p>


2014 ◽  
Vol 18 (2) ◽  
pp. 81 ◽  
Author(s):  
Dinesh Prasad ◽  
D. R. Bhaskar ◽  
M. Srivastava

This paper proposes a new single resistancecontrolled sinusoidal oscillator (SRCO) which employs only onevoltage differencing current conveyor (VDCC), two groundedresistors and two grounded capacitors. The presented circuitconfiguration offers the following advantageous features (i)explicit current-mode output with independent control ofcondition of oscillation (CO) and frequency of oscillation (FO) (ii)low active and passive sensitivities and (iii) a very good frequencystability. The proposed structure can also be configured as (a)trans-admittance low pass filter and band pass filter and (b)quadrature oscillator. The validity of the proposed SRCO,quadrature oscillator and trans-admittance low pass filter andband pass filter has been verified by PSPICE simulations usingTSMC CMOS 0.18μm process model parameters.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850113 ◽  
Author(s):  
Ashok Kumar ◽  
Sajal K. Paul

The paper presents a new second-order single input multiple output (SIMO) type current mode (CM) universal filter. The proposed circuit uses two dual-X second generation multi-output current conveyors (DX-MOCCII), two grounded capacitors and three grounded resistors. The circuit configuration realizes low-pass filter (LPF), high-pass filter (HPF), band-pass filter (BPF), notch filter (NF) and all-pass filter (APF) responses simultaneously at different output terminals. The new circuit enjoys the features of low input impedance and high output impedance, which is desirable and useful for cascadability in CM circuits. For realizing the universal filter responses, the proposed circuit configuration does not require matching constraint of passive components and both active and passive sensitivities are found low. In addition, the extension of the proposed circuit as a resistorless universal filter has also been presented. As an application of the proposed filter, inverting band pass output is connected to a negative unity gain current follower in a close loop to design voltage and CM multiphase sinusoidal oscillators (MSOs). Comparison of the proposed configuration with available literature is given. The PSPICE simulation of the filter and its application as MSO are performed to verify the agreement with the theoretical proposition.


Sign in / Sign up

Export Citation Format

Share Document