Current-differencing band-pass filter realization with application to high-frequency electronically tunable low-supply-voltage current-mirror-only oscillator

Author(s):  
S. Pookaiyaudom ◽  
R. Sitdhikorn
Author(s):  
Dr. D. D. Mulajkar ◽  

A new electronically tunable current-mode third order filter is proposed in this paper. OP-AMP is used as an active building block. With current input the filter can realize band pass responses in current mode. The filter circuit realizes calculated transfer function. The other attractive features of the filter are a) Employment of minimum active and passive elements b) Responses are electronically tunable c) Low active and passive sensitivities d) Suitable for high frequency operation e) Ideal for integrated circuit implementation.


2016 ◽  
Vol 46 (2) ◽  
pp. 1307-1318 ◽  
Author(s):  
Govind Umarji ◽  
Nilam Qureshi ◽  
Suresh Gosavi ◽  
Uttam Mulik ◽  
Atul Kulkarni ◽  
...  

2012 ◽  
Vol 229-231 ◽  
pp. 1605-1608
Author(s):  
Xiang Ning Fan ◽  
Kuan Bao ◽  
Rui Wu ◽  
Jun Bo Liu

This paper presents a 0.18μm CMOS based Gm-C complex band-pass (CBP) filter with tuning circuit. Active-Gm-C structure with Nauta transconductor and phase-locked loop (PLL) architecture are adopted by the filter and the tuning circuit respectively which can achieve accurate frequency response. The layout size is 970μm×920μm. Under a 1.8V supply voltage, measurement results show that the pass-band gain and the ripple of the filter is 3.1dB and 3dB respectively. The bandwidth after tuning is 32.5MHz, image rejection ratio (IRR) is about 47dB, and the power dissipation of the filter is about 21.6mW.


2006 ◽  
Vol 15 (06) ◽  
pp. 849-860 ◽  
Author(s):  
SAMIR BEN SALEM ◽  
DORRA SELLAMI MASMOUDI ◽  
MOURAD LOULOU

In this paper, we introduce an implementation of a CCII-based grounded inductance operating in class AB. In order to get tunable characteristics of the design, a translinear CCII configuration is used as a basic block for its high level of controllability. A frequency characterization of the translinear CCII is done. In order to optimize its static and dynamic characteristics, an algorithmic driven methodology is developed ending to the optimal transistor geometries. The optimized CCII has a current bandwidth of 1.28 GHz and a voltage bandwidth of 5.48 GHz. It is applied in the simulated inductance design. We first consider the conventional topology of the grounded inductance based on the generalized impedance converter principle. Making use of the controllable series parasitic resistance at port X in translinear CCII, we design tunable characteristics of the inductance. The effect of current conveyor's nonidealities has been taken into account. A compensation strategy has been presented. It is based on the insertion of a high active CCII-based negative resistance and a very low passive resistance. The compensation strategy does not affect the inductance tuning process. Simulation results show that the proposed inductance can be tuned in the range [0.025 μH; 15.4 μH]. The simulated inductance has been applied in a fully integrated tunable high frequency band pass filter to illustrate the versatility of the circuit. The filter is electrically tunable by controlling the conveyor's bias current.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1474
Author(s):  
Zhiqun Li ◽  
Yan Yao ◽  
Zengqi Wang ◽  
Guoxiao Cheng ◽  
Lei Luo

This paper presents a low-voltage ZigBee transceiver covering a unique frequency band of 780/868/915/2400 MHz in 180 nm CMOS technology. The design consists of a receiver with a wideband variable-gain front end and a complex band-pass filter (CBPF) based on poles construction, a transmitter employing the two-point direct-modulation structure, a Ʃ-Δ fractional-N frequency synthesizer with two VCOs and some auxiliary circuits. The measured results show that under 1 V supply voltage, the receiver reaches −93.8 dBm and −102 dBm sensitivity for 2.4 GHz and sub-GHz band, respectively, and dissipates only 1.42 mW power. The frequency synthesizer achieves −106.8 dBc/Hz and −116.7 dBc/Hz phase noise at 1 MHz frequency offset along with 4.2 mW and 3.5 mW power consumption for 2.4 GHz and sub-GHz band, respectively. The transmitter features 2.67 dBm and 12.65 dBm maximum output power at the expense of 21.2 mW and 69.5 mW power for 2.4 GHz and sub-GHz band, respectively.


2006 ◽  
Vol 301 ◽  
pp. 117-120
Author(s):  
Mihoko Momotani ◽  
Naoko Mori ◽  
Song Min Nam ◽  
Hirofumi Kakemoto ◽  
Satoshi Wada ◽  
...  

In order to fabricate a microstrip band pass filter in GHz region as a passive component of RF modules, Al2O3 thick films were prepared on Cu metal substrates by AD (Aerosol Deposition) process. The dimensions of the filters were determined by the high frequency electromagnetic analysis. The filters were successfully fabricated on AD-derived Al2O3 thick films by employing sputtering, photolithography, electroplating and chemical etching processes. Their filtering characteristics were examined by a Network Analyzer. Through this work, we suggest that the AD process will be important the fabrication technology for integrated RF modules.


Author(s):  
Ashok Kumar ◽  
Ajay Kumar Kushwaha ◽  
Sajal K. Paul

A new electronically tunable quadrature oscillator is presented using a biquad band pass filter. The new band pass filter is designed using two dual X second-generation multi-output current conveyors (DX-MOCCIIs), two grounded capacitors, two grounded resistors and one NMOS transistor working in the triode region. It is used to design a four-phase voltage and three-phase current output quadrature oscillator simultaneously. The frequency of the oscillator can be tuned externally through the MOS gate voltage without affecting the condition of oscillation. The phase noise, frequency stability and nonideality analysis are given. The functionality of the oscillator circuit has been confirmed by SPICE simulation and also hardware realization using commercially available IC AD844.


Author(s):  
W Jiang ◽  
S K Spurgeon ◽  
J A Twiddle ◽  
F S Schlindwein ◽  
Y Feng ◽  
...  

A Morlet-like wavelet cluster-based method for band-pass filtering and envelope demodulation is described. Via appropriate choice of wavelet parameters, a wavelet cluster combined with multi-Morlet-like wavelets can be used as a band-pass filter with zero phase shift, flat topped pass-band and rapid attenuation in the transition band. It can be used to extract high frequency natural vibration components. The imaginary part of the Morlet-like wavelet cluster is the Hilbert transformation of its real part. This can be used to implement envelope demodulation and extract the envelope component of the high frequency resonance band. The method is applied for fault diagnosis relating to bearing defects in a dry vacuum pump. It is shown that the fault characteristic frequencies can be extracted effectively. The efficacy of the method is demonstrated in experimental studies.


Sign in / Sign up

Export Citation Format

Share Document