ACTIVE RC FILTERS USING OPERATIONAL TRANSRESISTANCE AMPLIFIERS

1998 ◽  
Vol 08 (04) ◽  
pp. 507-516 ◽  
Author(s):  
K. N. SALAMA ◽  
A. M. SOLIMAN

A new generalized universal filter configuration using the Operational Transresistance Amplifier is proposed. Twelve different filter circuits are derived from the general configuration. The circuits are designed to provide Low-pass, Band-pass, High-pass, All-pass and Notch responses through appropriate choice of admittances. The feasibility of this configuration in operating at high frequencies is presented. A detailed analysis taking the effect of the finite transresistance gain into consideration is presented. Self-compensation that requires no additional elements of some of the proposed filters is presented. The effectiveness of the proposed configuration is demonstrated by HSpice simulations.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mourina Ghosh ◽  
Sajal K. Paul ◽  
Rajiv Kumar Ranjan ◽  
Ashish Ranjan

This paper proposes a multi-input single-output (MISO) third order voltage mode (VM) universal filter using only one operational transresistance amplifier (OTRA). The proposed circuit realizes low-pass, high-pass, all-pass, band-pass, and notch responses from the same topology. The PSPICE Simulation results using 0.5 μm CMOS technology agree well with the theoretical design.


2005 ◽  
Vol 14 (01) ◽  
pp. 159-164 ◽  
Author(s):  
SUDHANSHU MAHESHWARI ◽  
IQBAL A. KHAN

A novel voltage-mode universal filter employing only two current differencing buffered amplifiers (CDBAs) is proposed. The filter uses four inputs and single output to realize six responses, viz. low-pass, high-pass, inverting band-pass, noninverting band-pass, band-elimination, and all-pass through input selection with independent pole-Q control. Computer simulation results using SPICE are also given to verify the theory.


Author(s):  
Montree Kumngern

This paper presents a new current-mode universal filter with one-input three-output employing three translinear current conveyors and two grounded capacitors. The proposed filter provides low-pass, band-pass, high-pass current response with high output impedance output which can be directly connected for current-mode circuit. The band-pass and all-pass filters can also be obtained. The parameters wo and Q can be controlled separately and electronically by the bias currents of current conveyors. For realizing all filtering functions, no passive and active matching conditions are required. The active and passive sensitivities are low. The characteristic of the proposed circuit can be confirmed by SPICE simulations.


Author(s):  
Rashmika Rai ◽  
◽  
S Indu

The study presents a universal filter and Oscillator obtain by applying only single input. All the passive components used are grounded which is suitable for integrated circuit implementation. In the circuit by applying for single input simultaneously low pass, High Pass, Band Pass, All Pass, and Notch filter is obtained by using two blocks of Differential Difference current conveyor transconductance amplifier.


2007 ◽  
Vol 16 (04) ◽  
pp. 507-516 ◽  
Author(s):  
SHAHRAM MINAEI ◽  
ERKAN YUCE

In this paper, a universal current-mode second-order active-C filter for simultaneously realizing low-pass, band-pass and high-pass responses is proposed. The presented filter employs only three plus-type second-generation current-controlled conveyors (CCCII+s). This filter needs no critical active and passive component matching conditions and no additional active and passive elements for realizing high output impedance low-pass, band-pass and high-pass characteristics. The angular resonance frequency (ω0) and quality factor (Q) of the proposed resistorless filter can be tuned electronically. To verify the theoretical analysis and to exhibit the performance of the proposed filter, it is simulated with SPICE program.


Author(s):  
Emre Cancioglu ◽  
Gokberk Cakiroglu ◽  
Alkim Gokcen ◽  
Yilmaz Sefa Altanay

This study provides design and implementation of four digital filters (low pass, high pass, band pass and band stop) for ECG (electrocardiogram) data on FPGA with MATLAB by a serial communication. The study is conducted with using ECG data which is obtained from PhysioBank Database platform. SysGen (System Generator for DSP) which is a toolbox for MATLAB is used for designing and implementing the digital filters. The aim of the study is to perform four different digital filters with various blocks on the SysGen Toolbox. The study then examines the results of four different digital filters.


Author(s):  
Umar Mohammad ◽  
Fang Tang ◽  
Shu Zhou ◽  
Mohd Yusuf Yasin

A new study imitating the design and implementation of single-input–single-output (SISO) filters as bilateral filters has been presented in this paper. Second generation current controlled current conveyor (CCCII), being a popular low power active element was considered for the realization of the proposed design. Complete design, analysis and implementation of the voltage mode SISO filter was done using only two CCCII’s and two passive parasitic components. The striking feature of this work is that the proposed design can be made to work at either the input node or the output node, as well as in the cases; the change of direction changes the filter into an inverse filter and buffer filter. Basic filter applications like low-pass, high-pass, band-pass and band-stop were aimed to check the uniformity of the proposed design at different frequencies. Results perceived from the simulation study were fare enough on both the side nodes of the proposed design. Categorically, the circuit can be aimed to work in lieu of a filter transceiver. The consistency of the circuit was analyzed by the nodal analysis. Whereas the working performance was enormously analyzed and evaluated during the simulation analysis. The proposed design was simulated in HSPICE tool to exhibit and exploit the delivery, using the 45[Formula: see text]nm predictive technology model (PTM) parameters, with [Formula: see text][Formula: see text]V rail to rail voltages. Maximum power consumption of the circuit is around 138.5[Formula: see text][Formula: see text]W. Finally, the design was also implemented in Cadence Virtuoso using 40[Formula: see text]nm SMIC parameters.


2016 ◽  
Vol 25 (12) ◽  
pp. 1650154 ◽  
Author(s):  
Ahmet Abaci ◽  
Erkan Yuce

In this paper, two new second-order voltage-mode universal filters are proposed. Both of the proposed filters use only two differential voltage current conveyors (DVCCs), four resistors and two grounded capacitors which are advantageous from integrated circuit technology point of view. They can simultaneously provide second-order low-pass, high-pass, band-pass, notch and all-pass responses. They offer orthogonal control of angular resonance frequency and quality factor. However, they have a single matching condition for only all-pass responses. A number of simulations based on SPICE program are accomplished in order to demonstrate the performance of both filters.


2011 ◽  
Vol 20 (03) ◽  
pp. 549-555 ◽  
Author(s):  
A. K. SINGH ◽  
R. SENANI ◽  
D. R. BHASKAR ◽  
R. K. SHARMA

A number of configurations for realizing voltage-mode (VM) biquads using op-amps and OTAs have been presented in the literature, however, none of these provide the following desirable properties simultaneously: (i) realizability of all the five standard filters (namely; low pass, high pass, band pass, band stop and all pass), (ii) tunability of all the three filter parameters (namely; ω0, bandwidth or Q0 and gain) and (iii) not requiring any realization condition in any of the five filter responses. This paper presents a new configuration which does possess all the above mentioned desirable properties simultaneously while using only two internally-compensated type op-amps and a reasonable number of OTAs. The workability of the new configuration has been demonstrated by SPICE simulations based upon CMOS Op-amp and CMOS OTAs.


2013 ◽  
Vol 22 (01) ◽  
pp. 1250064 ◽  
Author(s):  
NEETA PANDEY ◽  
SAJAL K. PAUL

The configuration with electronic tunable characteristics that can work in mixed mode may be useful from IC realization viewpoint and application adaptability. This paper proposes an electronically tunable mixed mode universal filter based on multiple output current controlled current conveyor (MOCCCII) and this single topology without any alteration can be used in all four modes i.e., voltage (VM), current (CM), transimpedance (TIM) and transadmittance (TAM). The architecture uses four MOCCCIIs and two grounded capacitors; and can realize universal filter functions — low pass (LP), band pass (BP), high pass (HP), notch (NF) and all pass (AP) for all four modes. Moreover the input impedance is high and output impedance is low for voltage signal and vice-versa for current signal, hence the proposed topology is suitable for cascading for all four modes. The workability of the proposed circuit has been verified via SPICE simulations using AMS 0.35 μm CMOS technology.


Sign in / Sign up

Export Citation Format

Share Document