Nonlinear Analysis of the Tristable Energy Harvester with a Resonant Circuit for Performance Enhancement

2018 ◽  
Vol 28 (07) ◽  
pp. 1850092 ◽  
Author(s):  
Bo Yan ◽  
Shengxi Zhou ◽  
Grzegorz Litak

The tristable energy harvesters (TEH) can achieve broadband energy harvesting performance from low frequency and low level excitations. Previous studies mainly focused on the tristable energy harvesting structure that is connected to a pure resistor. This paper presents an enhanced TEH with a series resistor-inductor resonant (RL) circuit connected to the piezoelectric layers. The influence of the resonant frequency of the circuit, the excitation level, and equilibrium positions on dynamic responses is analyzed using modern methods of nonlinear dynamics. The results demonstrate that the proposed TEH undergoes the periodic and chaotic motions alternatively along with the increase of the resonant frequency of the RL circuit. Furthermore, the TEH with a RL circuit dramatically enhances the energy harvesting efficiency, and simultaneously slightly decreases the vibration response. The presented TEH with a RL circuit will open a new page in the nonlinear energy harvesting technology.

2012 ◽  
Vol 490-495 ◽  
pp. 2146-2150
Author(s):  
Shao Qiang Liu ◽  
Jun Xian Peng ◽  
Min Qiang Peng ◽  
Xiao Ping Fan

Piezoelectric vibrator is the core of ambient energy harvesters utilizing piezoelectric effect. The developed piezoelectric vibrators are generally one degree of freedom (DOF) vibration systems with narrow resonant frequency bandwidth, which restricts the energy harvesting efficiency. This paper studies a design of two DOF piezoelectric vibrator consisted of two single DOF vibrators and a connecting spring to extend the resonant frequency bandwidth. By adjusting the structural parameters, two natural frequencies of the vibrator are set to adjacent values, so that it can maintain a high response rate over a wide frequency range near its two resonance points. Structural parameters for maximizing the power output of the vibrator are optimized by using ANSYS software. Contrastive analysis between a typical cantilevers array and the proposed vibrator is performed. The results show that the proposed vibrator has better broadband response and the design scheme is effective.


Author(s):  
Aneesh Koka ◽  
Henry A. Sodano

Piezoelectric nanowires (NWs) have recently attracted immense interest due to their excellent electro-mechanical coupling behavior that can efficiently enable conversion of low-intensity mechanical vibrations for powering or augmenting batteries of biomedical devices and portable consumer electronics. Specifically, nano-electromechanical systems (NEMS) composed of piezoelectric NWs offer an exciting potential for energy harvesting applications due to their enhanced flexibility, light weight, and compact size. Compared to the bulk form, high aspect ratio NWs can exhibit higher deformation to produce an enhanced piezoelectric response at a lower stress level. NEMS made of conventional semiconducting vertically aligned, ZnO NW arrays have been investigated thoroughly for energy harvesting; however, ZnO has a lower piezoelectric coupling coefficient as compared to many ferroelectric ceramics which limits its piezoelectric performance. Amidst lead-free ferroelectric materials, environmentally-friendly barium titanate (BaTiO3) possesses one of the highest piezoelectric strain coefficients and thus can enable greater energy transfer when used in vibrational energy harvesters. In this paper, a novel NEMS energy harvester is fabricated using ultra-long (∼40 μm long), vertically aligned BaTiO3 NW arrays which has a low resonant frequency (below 200 Hz) and its AC power harvesting capacity from low amplitude base vibrations (0.25 g) is demonstrated. The design and fabrication of low resonant frequency vibrational energy harvesters has been challenging in the field of MEMS/NEMS since the high stiffness of the structures results in resonant frequency often greater than 1 kHz. However, ambient mechanical vibrations usually exist in the 1 Hz to 1 kHz range and thus highly complaint ultra-long, NW arrays are beneficial to enable efficient energy conversion. Through the use of this newly developed synthesis process for the growth of highly compliant, ultra-long BaTiO3 NW arrays, it is shown that piezoelectric NWs based NEMS energy harvesters capable of harnessing this low frequency ambient vibrational energy can be conceived.


Author(s):  
Lin Dong ◽  
Frank T. Fisher

Vibration-based energy harvesting has been widely investigated to as a means to generate low levels of electrical energy for applications such as wireless sensor networks. However, due to the fact that vibration from the environment is typically random and varies with different magnitudes and frequencies, it is a challenge to implement frequency matching in order to maximize the power output of the energy harvester with a wider frequency bandwidth for applications where there is a time-dependent, varying source frequency. Possible solutions of frequency matching include widening the bandwidth of the energy harvesters themselves in order to implement frequency matching and to perform resonance-based tuning approach, the latter of which shows the most promise to implement a frequency matching design. Here three tuning strategies are discussed. First a two-dimensional resonant frequency tuning technique for the cantilever-geometry energy harvesting device which extended previous 1D tuning approaches was developed. This 2D approach could be used in applications where space constraints impact the available design space of the energy harvester. In addition, two novel resonant frequency tuning approaches (tuning via mechanical stretch and tuning via applied bias voltage, respectively) for electroactive polymer (EAP) membrane-based geometry energy harvesters was proposed, such that the resulting changes in membrane tension were used to tune the device for applications targeting variable ambient frequency environments.


2019 ◽  
Author(s):  
Chris Bowen

Numerical and experimental investigations of nonlinear bistable energy harvesters (BEHs) with asymmetric potential functions are presented under various excitations for performance enhancement. Basin of attraction under harmonic excitation indicates that asymmetric potentials in BEHs have negative effect on the power output. Therefore, a proper bias angle is introduced to the asymmetric potential BEHs for performance enhancement. Numerical and experimental results show that the power output is actually improved in a certain bias angle range under harmonic and random excitations. Furthermore, experiments under human motion excitation demonstrate that the asymmetric potential BEHs could perfectly combine with the asymmetric motion of lower-limb to improve the performance.


We study how ribbons of fluids subjected to electric fields can serve applications in energy harvesting. In particular the emphasis is on how the geometry (i.e. 2-D ribbons) can influence functionality. For applications related to energy harvesting, we consider the use of polymer Piezo-electric PolyvinylideneFluoride (PVDF). Corona poling, photo-induced, photo-thermal and electron beam poling are the different conventional techniques used for PVDF poling. The parallel plate capacitor structure made for poling the PVDF material while the PVDF is being cured. One key advantage of preparing PVDF is the ability of solution processing. Normally, the liquid is then spin coated on a substrate and left to dry. Either during the process of spin coating, or after drying - the film of PVDF is poled so as to align the dipoles and make a piezoelectric. We propose the use of a metal-insulator ribbon like electrode geometry to combine the process of fabrication and poling thereby making the process more efficient. On the application of a voltage across the electrodes, the voltage of Vs is developed across the fluid. This result in a field of Vs/d across the PVDF fills aiding the process of poling while the film is in liquid phase. Therefore the ribbon like geometry aids the use of PVDF piezo-electrics in two ways. Firstly, it makes the fabrication process efficient by combining the poling with the structure development. Secondly, the control of width (w) and length (l) aids the setup of the PVDF piezoelectric resonant frequency for a given thickness (d). This helps match the resonant frequency of the ribbon with the incoming low frequency vibration to improve the energy harvesting levels. Piezo-electrics can be used in submerged applications, large area PVDF energy scavengers, mechanical filters and sensors, rural electrification, and charging circuits for hand-held devices.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2770 ◽  
Author(s):  
Iman Izadgoshasb ◽  
Yee Lim ◽  
Ricardo Vasquez Padilla ◽  
Mohammadreza Sedighi ◽  
Jeremy Novak

Harvesting electricity from low frequency vibration sources such as human motions using piezoelectric energy harvesters (PEH) is attracting the attention of many researchers in recent years. The energy harvested can potentially power portable electronic devices as well as some medical devices without the need of an external power source. For this purpose, the piezoelectric patch is often mechanically attached to a cantilever beam, such that the resonance frequency is predominantly governed by the cantilever beam. To increase the power generated from vibration sources with varying frequency, a multiresonant PEH (MRPEH) is often used. In this study, an attempt is made to enhance the performance of MRPEH with the use of a cantilever beam of optimised shape, i.e., a cantilever beam with two triangular branches. The performance is further enhanced through optimising the design of the proposed MRPEH to suit the frequency range of the targeted vibration source. A series of parametric studies were first carried out using finite-element analysis to provide in-depth understanding of the effect of each design parameters on the power output at a low frequency vibration. Selected outcomes were then experimentally verified. An optimised design was finally proposed. The results demonstrate that, with the use of a properly designed MRPEH, broadband energy harvesting is achievable and the efficiency of the PEH system can be significantly increased.


2018 ◽  
pp. 826-862
Author(s):  
Abdessattar Abdelkefi

There exist numerous low-frequency excitation sources, such as walking, breathing, and ocean waves, capable of providing viable amounts of mechanical energy to power many critical devices, including pacemakers, cell phones, MEMS devices, wireless sensors, and actuators. Harvesting significant energy levels from such sources can only be achieved through the design of devices capable of performing effective energy transfer mechanisms over low frequencies. In this chapter, two concepts of efficient low-frequency piezoelectric energy harvesters are presented, namely, variable-shaped piezoelectric energy harvesters and piezomagnetoelastic energy harvesters. Linear and nonlinear electromechanical models are developed and validated in this chapter. The results show that the quadratic shape can yield up to two times the energy harvested by a rectangular one. It is also demonstrated that depending on the available excitation frequency, an enhanced energy harvester can be tuned and optimized by changing the length of the piezoelectric material or by changing the distance between the two tip magnets.


2012 ◽  
Vol 23 (13) ◽  
pp. 1433-1449 ◽  
Author(s):  
Lihua Tang ◽  
Yaowen Yang ◽  
Chee-Kiong Soh

In recent years, several strategies have been proposed to improve the functionality of energy harvesters under broadband vibrations, but they only improve the efficiency of energy harvesting under limited conditions. In this work, a comprehensive experimental study is conducted to investigate the use of magnets for improving the functionality of energy harvesters under various vibration scenarios. First, the nonlinearities introduced by magnets are exploited to improve the performance of vibration energy harvesting. Both monostable and bistable configurations are investigated under sinusoidal and random vibrations with various excitation levels. The optimal nonlinear configuration (in terms of distance between magnets) is determined to be near the monostable-to-bistable transition region. Results show that both monostable and bistable nonlinear configurations can significantly outperform the linear harvester near this transition region. Second, for ultra-low-frequency vibration scenarios such as wave heave motions, a frequency up-conversion mechanism using magnets is proposed. By parametric study, the repulsive configuration of magnets is found preferable in the frequency up-conversion technique, which is efficient and insensitive to various wave conditions when the magnets are placed sufficiently close. These findings could serve as useful design guidelines when nonlinearity or frequency up-conversion techniques are employed to improve the functionality of vibration energy harvesters.


Author(s):  
Christopher Sugino ◽  
Vinciane Guillot ◽  
Alper Erturk

Vibration-based energy harvesting is a growing field for generating low-power electricity to use in wireless electronic devices, such as the sensor networks used in structural health monitoring applications. Locally resonant metastructures, which are structures that comprise locally resonant metamaterial components, enable bandgap formation at wavelengths much longer than the lattice size, for critical applications such as low-frequency vibration attenuation in flexible structures. This work aims to bridge the domains of energy harvesting and locally resonant metamaterials to form multifunctional structures that exhibit both low-power electricity generation and vibration attenuation capabilities. A fully coupled electromechanical modeling framework is developed for two characteristic systems and their modal analysis is presented. Simulations are performed to explore the vibration and electrical power frequency response maps for varying electrical load resistance, and optimal loading conditions are presented. Case studies are presented to understand the interaction of bandgap formation and energy harvesting capabilities of this new class of multifunctional energy-harvesting locally resonant metastructures. It is shown that useful energy can be harvested from the locally resonant metastructure without significantly diminishing their dramatic vibration attenuation in the locally resonant bandgap. Thus, by integrating energy harvesters into a locally resonant metastructure, there is new potential for multifunctional self-powering or self-sensing locally resonant metastructures.


2016 ◽  
Vol 28 (6) ◽  
pp. 740-759 ◽  
Author(s):  
Rupesh Patel ◽  
Yoshikazu Tanaka ◽  
Stewart McWilliam ◽  
Hidemi Mutsuda ◽  
Atanas A Popov

This paper develops an analytical model for predicting the performance of simply-supported multi-layered piezoelectric vibrating energy harvesters. The model includes the effects of material and geometric non-linearities, as well as axial pre-tension/compression, and is validated against experimental devices for a large range of base accelerations. Numerical and experimental investigations are performed to understand the benefits of using simply-supported devices compared to cantilevered devices. Comparisons are made in an unbiased manner by tuning the resonant frequency to the same value by modifying the geometry, and the results obtained indicate that simply-supported devices are capable of generating higher voltage levels than cantilever devices. The model is also used to investigate the benefits of using multi-layered devices to improve power density. Depending on harvester composition, power-per-unit-volume of piezoelectric material for a device is increased through the stacking of layers.


Sign in / Sign up

Export Citation Format

Share Document