SIMPLIFIED DYNAMICS AND OPTIMIZATION OF LARGE SCALE TRAFFIC NETWORKS

2004 ◽  
Vol 14 (04) ◽  
pp. 579-601 ◽  
Author(s):  
MICHAEL HERTY ◽  
AXEL KLAR

Simplified dynamic models for traffic flow on networks are derived from network models based on partial differential equations. We obtain simplified models of different complexity like models based on ordinary differential equations or algebraic models. Optimization problems for all models are investigated. Analytical and numerical properties are studied and comparisons are given for simple traffic situations. Finally, the simplified models are used to optimize large scale networks.

2021 ◽  
Author(s):  
Damoun Langary ◽  
Anika Kueken ◽  
Zoran Nikoloski

Balanced complexes in biochemical networks are at core of several theoretical and computational approaches that make statements about the properties of the steady states supported by the network. Recent computational approaches have employed balanced complexes to reduce metabolic networks, while ensuring preservation of particular steady-state properties; however, the underlying factors leading to the formation of balanced complexes have not been studied, yet. Here, we present a number of factorizations providing insights in mechanisms that lead to the origins of the corresponding balanced complexes. The proposed factorizations enable us to categorize balanced complexes into four distinct classes, each with specific origins and characteristics. They also provide the means to efficiently determine if a balanced complex in large-scale networks belongs to a particular class from the categorization. The results are obtained under very general conditions and irrespective of the network kinetics, rendering them broadly applicable across variety of network models. Application of the categorization shows that all classes of balanced complexes are present in large-scale metabolic models across all kingdoms of life, therefore paving the way to study their relevance with respect to different properties of steady states supported by these networks.


2018 ◽  
Author(s):  
Sungho Shin ◽  
Ophelia Venturelli ◽  
Victor M. Zavala

AbstractWe present a nonlinear programming (NLP) framework for the scalable solution of parameter estimation problems that arise in dynamic modeling of biological systems. Such problems are computationally challenging because they often involve highly nonlinear and stif differential equations as well as many experimental data sets and parameters. The proposed framework uses cutting-edge modeling and solution tools which are computationally efficient, robust, and easy-to-use. Specifically, our framework uses a time discretization approach that: i) avoids repetitive simulations of the dynamic model, ii) enables fully algebraic model implementations and computation of derivatives, and iii) enables the use of computationally efficient nonlinear interior point solvers that exploit sparse and structured linear algebra techniques. We demonstrate these capabilities by solving estimation problems for synthetic human gut microbiome community models. We show that an instance with 156 parameters, 144 differential equations, and 1,704 experimental data points can be solved in less than 3 minutes using our proposed framework (while an off-the-shelf simulation-based solution framework requires over 7 hours). We also create large instances to show that the proposed framework is scalable and can solve problems with up to 2,352 parameters, 2,304 differential equations, and 20,352 data points in less than 15 minutes. Competing methods reported in the computational biology literature cannot address problems of this level of complexity. The proposed framework is flexible, can be broadly applied to dynamic models of biological systems, and enables the implementation of sophisticated estimation techniques to quantify parameter uncertainty, to diagnose observability/uniqueness issues, to perform model selection, and to handle outliers.Author summaryConstructing and validating dynamic models of biological systems spanning biomolecular networks to ecological systems is a challenging problem. Here we present a scalable computational framework to rapidly infer parameters in complex dynamic models of biological systems from large-scale experimental data. The framework was applied to infer parameters of a synthetic microbial community model from large-scale time series data. We also demonstrate that this framework can be used to analyze parameter uncertainty, to diagnose whether the experimental data are sufficient to uniquely determine the parameters, to determine the model that best describes the data, and to infer parameters in the face of data outliers.


2018 ◽  
Vol 29 (11) ◽  
pp. 1850112 ◽  
Author(s):  
Mianfang Liu ◽  
Dongchu Han ◽  
Dongmei Li ◽  
Ming Wang

Recent efficient monitoring and traffic management of large-scale mixed traffic networks still remain a challenge for both traffic researchers and practitioners. The difficulty in modeling route guidance evacuation of pedestrian-vehicle mixed flow lies in mixed flow and uneven or heterogeneous network flow. Existing studies have demonstrated that multi-region control can display different layers of traffic state measurement and control, and incorporate heterogeneity effect in the large-scale network dynamics. The optimal perimeter control can manipulate the percentages of flows that transfer between two regions, offering real-time traffic management strategies to improve the network performance. However, the effect of route guidance evacuation integrated with perimeter control strategies in case of heterogeneous traffic networks is still unexplored. The paper advances in this direction by firstly extending route choice behavior aggregation with perimeter control. For an evacuation study, we consider a campus and its surrounding traffic network that can be classified into two types of networks: the first includes emergency areas that involve a large number of evacuees, and the second includes roads that lead to different destinations. The second network consists of some regions with different evacuation directions. Based on the configuration, this paper proposes a route evacuation guidance control strategy that addresses traffic flow first assignment between regions by controlling perimeter flow with the help of Macroscopic fundamental diagram (MFD) representation and to guide evacuates’ route choice at intersections by LOGIT model in regions. In addition, comparison results show that the proposed route guidance strategy has considerable potential to improve performances and equilibrium conditions (i.e. system optimum and user equilibrium) on the overall network.


2020 ◽  
Vol 62 (3-4) ◽  
pp. 189-204 ◽  
Author(s):  
Alexander van der Grinten ◽  
Eugenio Angriman ◽  
Henning Meyerhenke

AbstractNetwork science methodology is increasingly applied to a large variety of real-world phenomena, often leading to big network data sets. Thus, networks (or graphs) with millions or billions of edges are more and more common. To process and analyze these data, we need appropriate graph processing systems and fast algorithms. Yet, many analysis algorithms were pioneered on small networks when speed was not the highest concern. Developing an analysis toolkit for large-scale networks thus often requires faster variants, both from an algorithmic and an implementation perspective. In this paper we focus on computational aspects of vertex centrality measures. Such measures indicate the (relative) importance of a vertex based on the position of the vertex in the network. We describe several common (and some recent and thus less established) measures, optimization problems in their context as well as algorithms for an efficient solution of the raised problems. Our focus is on (not necessarily exact) performance-oriented algorithmic techniques that enable significantly faster processing than the previous state of the art – often allowing to process massive data sets quickly and without resorting to distributed graph processing systems.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2782-2787

The purpose of this study is to optimize the hydraulic pressures of a real-world water distribution network to protect the system with sustained adequate water supply. This novel approach is different from other published works in the sense that this study is intended to improve the water system of the Kabacan Water District (KWD) in Cotabato, Philippines. Yet, there are no previous scholarly efforts done with the KWD water system; thus, this study. The method used here is a modification of the methods used by references [4] and [14]. This optimization approach includes determination of control valve placement in the network to control the hydraulic pressures within the system. The proposed numerical model, with the EPANET Toolkit interface, resulted in a simpler and more accurate algorithm, which converges easily in all the 48 network models used in this study where the convergence is achieved from 9 to 74 iterations. This is an efficient and easy-to-use optimization solver for analyzing looped pipe networks even in large scale networks.


Author(s):  
Christian D. Remy ◽  
Darryl G. Thelen

Forward dynamic simulation provides a powerful framework for characterizing in vivo loads, for investigating the muscular coordination of movement, and for predicting changes in movement due to injury, impairment or surgical intervention. However, the computational challenge of generating simulations has greatly limited the use and application of dynamic models. Traditional approaches use optimization to determine a set of input trajectories (e.g. muscle forces or joint torques) that drive a model to track experimental motion and force measurements [1,2]. Optimization is needed, in part, to resolve dynamic inconsistencies between measured kinematics and ground reactions. Large scale dynamic optimization problems of this type are inherently difficult to solve, often necessitating model simplifications. It has previously been shown that dynamic inconsistencies can be efficiently resolved on a per-frame basis by enforcing whole-body dynamic constraints [3,4]. However, forward simulations cannot be generated from such data since integration of the accelerations will not re-produce measured velocities and positions.


Author(s):  
Fatemeh Fakhrmoosavi ◽  
Ramin Saedi ◽  
Ali Zockaie ◽  
Alireza Talebpour

Connected and automated vehicle technologies are expected to significantly contribute in improving mobility and safety. As connected and autonomous vehicles have not been used in practice at large scale, there are still some uncertainties in relation to their applications. Therefore, researchers utilize traffic simulation tools to model the presence of these vehicles. There are several studies on the impacts of vehicle connectivity and automation at the segment level. However, only a few studies have investigated these impacts on traffic flow at the network level. Most of these studies consider a uniform distribution of connected or autonomous vehicles over the network. They also fail to consider the interactions between heterogeneous drivers, with and without connectivity, and autonomous vehicles at the network level. Therefore, this study aims to realistically observe the impacts of these emerging technologies on traffic flow at the network level by incorporating adaptive fundamental diagrams in a mesoscopic simulation tool. The adaptive fundamental diagram concept considers spatially and temporally varying distributions of different vehicle types with heterogeneous drivers. Furthermore, this study considers the intersection capacity variations and fundamental diagram adjustments for arterial links resulting from the presence of different vehicle types and driver classes. The proposed methodology is applied to a large-scale network of Chicago. The results compare network fundamental diagrams and hysteresis loop areas for different proportions of connected and autonomous vehicles. In addition to quantifying impacts of connected and autonomous vehicles, the results demonstrate the impacts of various factors associated with these vehicles on traffic flow at the network level.


2020 ◽  
Vol 38 (1) ◽  
pp. 102
Author(s):  
Christofer Roque Ribeiro SILVA ◽  
Alexandre Celestino Leite ALMEIDA ◽  
Rodrigo Tomás Nogueira CARDOSO ◽  
Ricardo Hiroshi Caldeira TAKAHASHI

This work proposes a version of the Individual-Based Model (IBM) that converges, on average, to the result of the SIR (Susceptible-Infected-Recovered) model, and studies the effect of this IBM in two types of networks: random and scale-free. A numerical computational case study is considered, using large scale networks implemented by an efficient framework. Statistical tests are performed to show the similarities and differences between the network models and the deterministic model taken as a baseline. Simulation results verify that different network topologies alter the behavior of the epidemic propagation in the following aspects: temporal evolution, basal reproducibility and the number of infected in the final.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1800
Author(s):  
Chanjae Lee ◽  
Young Yoon

This paper presents a novel method for predicting the traffic speed of the links on large-scale traffic networks. We first analyze how traffic flows in and out of every link through the lowest cost reachable paths. We aggregate the traffic flow conditions of the links on every hop of the inbound and outbound reachable paths to represent the traffic flow dynamics. We compute a new measure called traffic flow centrality (i.e., the Z value) for every link to capture the inherently complex mechanism of the traffic links influencing each other in terms of traffic speed. We combine the features regarding the traffic flow centrality with the external conditions around the links, such as climate and time of day information. We model how these features change over time with recurrent neural networks and infer traffic speed at the subsequent time windows. Our feature representation of the traffic flow for every link remains invariant even when the traffic network changes. Furthermore, we can handle traffic networks with thousands of links. The experiments with the traffic networks in the Seoul metropolitan area in South Korea reveal that our unique ways of embedding the comprehensive spatio-temporal features of links outperform existing solutions.


Sign in / Sign up

Export Citation Format

Share Document