scholarly journals CHARGED POLYTROPIC STARS AND A GENERALIZATION OF LANE–EMDEN EQUATION

2004 ◽  
Vol 13 (07) ◽  
pp. 1441-1445 ◽  
Author(s):  
RODRIGO PICANÇO ◽  
MANOEL MALHEIRO ◽  
SUBHARTHI RAY

In this paper we discuss charged stars with polytropic equation of state, where we derive an equation analogous to the Lane–Endem equation. We assume that these stars are spherically symmetric, and the electric field have only the radial component. First we review the field equations for such stars and then we proceed with the analog of the Lane–Emden equation for a polytropic Newtonian fluid and their relativistic equivalent (Tooper, 1964).1 These kind of equations are very interesting because they transform all the structure equations of the stars in a group of differential equations which are much more simple to solve than the source equations. These equations can be solved numerically for some boundary conditions and for some initial parameters. For this we assume that the pressure caused by the electric field obeys a polytropic equation of state too.

2017 ◽  
Vol 27 (01) ◽  
pp. 1750186 ◽  
Author(s):  
Wei-Xiang Feng ◽  
Chao-Qiang Geng ◽  
W. F. Kao ◽  
Ling-Wei Luo

We study the Starobinsky or [Formula: see text] model of [Formula: see text] for neutron stars with the structure equations represented by the coupled differential equations and the polytropic type of the matter equation-of-state (EoS). The junction conditions of [Formula: see text] gravity are used as the boundary conditions to match the Schwarzchild solution at the surface of the star. Based on these the conditions, we demonstrate that the coupled differential equations can be solved directly. In particular, from the dimensionless EoS [Formula: see text] with [Formula: see text] and [Formula: see text] and the constraint of [Formula: see text], we obtain the minimal mass of the NS to be around 1.44 [Formula: see text]. In addition, if [Formula: see text] is larger than 5.0, the mass and radius of the NS would be smaller.


2018 ◽  
Vol 33 (24) ◽  
pp. 1850139
Author(s):  
M. Sharif ◽  
Sobia Sadiq

This paper is devoted to examine the cracking of spherically symmetric anisotropic fluid configuration for polytropic equation of state. For this purpose, we formulate the corresponding field equations as well as generalized Tolman–Oppenheimer–Volkoff equation. We introduce density perturbations in matter variables and then construct the force distribution function. In order to examine the occurrence of cracking/overturning, we consider two models corresponding to two values of the polytropic index. It is found that the first model exhibits overturning for the considered values of polytropic constant while the second model neither exhibits cracking nor overturning for larger values of polytropic constant.


2019 ◽  
Vol 16 (04) ◽  
pp. 1950056
Author(s):  
I. Nazir ◽  
M. Azam

In this paper, we have investigated the stability of a spherically symmetric object with charged anisotropic matter by using the concept of cracking. The cracking is a very intuitive technique to check the stability which is based on the analysis of the radial forces that appear on the system due to perturbations taking it out of its equilibrium state. For this, we have applied and studied the effect of local density perturbations to the hydrostatic equilibrium equation and on all the physical parameters with generalized polytropic equation of state. It is found that some of the generalized polytropic models exhibit cracking.


2019 ◽  
Vol 79 (12) ◽  
Author(s):  
Shiraz Khan ◽  
S. A. Mardan ◽  
M. A. Rehman

AbstractA framework is developed for generalized polytropes with the help of complexity factor introduced by Herrera (Phy Rev D 97:044010, 2018), by using the spherical symmetry with anisotropic inner fluid distribution. For this purpose generalized polytropic equation of state will be used, having two cases (i) for mass density $$(\mu _{o})$$(μo), (ii) for energy density $$(\mu )$$(μ), each case leads to a system of differential equations. These systems of differential equations involve two equations with three unknowns and they will be made consistent by using the complexity factor. The analysis of the solutions of these systems will be carried out graphically by using different parametric values involved in the systems.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850063 ◽  
Author(s):  
M. Sharif ◽  
Sobia Sadiq

This paper is aimed to study the modeling of spherically symmetric spacetime in the presence of anisotropic dissipative fluid configuration. This is accomplished for an observer moving relative to matter content using two cases of polytropic equation-of-state under conformally flat condition. We formulate the corresponding generalized Tolman–Oppenheimer–Volkoff equation, mass equation, as well as energy conditions for both cases. The conformally flat condition is imposed to find an expression for anisotropy which helps to study spherically symmetric polytropes. Finally, Tolman mass is used to analyze stability of the resulting models.


2020 ◽  
Vol 80 (2) ◽  
Author(s):  
S. A. Mardan ◽  
M. Rehman ◽  
I. Noureen ◽  
R. N. Jamil

Abstract In this paper, generalized polytropic equation of state is used to get new classes of polytropic models from the solution of Einstein-Maxwell field equations for charged anisotropic fluid configuration. The models are developed for different values of polytropic index $$n=1,~\frac{1}{2},~2$$n=1,12,2. Masses and radii of eight different stars have been regained with the help of developed models. The speed of sound technique and graphical analysis of model parameters is used for the viability of developed models. The analysis of models indicates they are well behaved and physically viable.


2009 ◽  
Vol 18 (03) ◽  
pp. 389-396 ◽  
Author(s):  
UTPAL MUKHOPADHYAY ◽  
P. C. RAY ◽  
SAIBAL RAY ◽  
S. B. DUTTA CHOUDHURY

Einstein field equations under spherically symmetric space–times are considered here in connection with dark energy investigation. A set of solutions is obtained for a kinematic Λ model, viz. [Formula: see text], without assuming any a priori value for the curvature constant and the equation-of-state parameter ω. Some interesting results, such as the nature of cosmic density Ω and deceleration parameter q, have been obtained with the consideration of two-fluid structure instead of the usual unifluid cosmological model.


2012 ◽  
Vol 90 (12) ◽  
pp. 1179-1183 ◽  
Author(s):  
Tooba Feroze

Two new classes of solutions of the Einstein–Maxwell field equations are obtained by substituting a general linear equation of state into the energy–momentum conservation equation. We have considered static, anisotropic, and spherically symmetric charged perfect fluid distribution of matter with a particular form of gravitational potential. Expressions for the mass–radius ratio, the surface, and the central red shift horizons are given for these solutions.


The static spherically symmetric solutions of Einstein’s unified field equations previously given refer to an electric field alone or to a magnetic field alone. The general solutions in the case where both types of field exist together are now derived. After appropriate boundary conditions have been applied, the solutions may be interpreted to represent a magnetic field arising from a point pole, and an electric field arising from a dispersed charge distribution, but tending asymptotically to that of a point charge. The solutions have an infinity of singular surfaces, contain no arbitrary constant corresponding to the mass of the system, and in them the charge distributions contain both positive and negative electricity at different places. It appears that the only static spherically symmetric solutions likely to have any physical significance are certain of those referring to an electric field alone.


Sign in / Sign up

Export Citation Format

Share Document