RECONSTRUCTION OF 5D COSMOLOGICAL MODELS FROM THE EQUATION OF STATE OF DARK ENERGY

2006 ◽  
Vol 15 (02) ◽  
pp. 215-224 ◽  
Author(s):  
LI XIN XU ◽  
HONG YA LIU ◽  
CHENG WU ZHANG

We consider a class of five-dimensional cosmological solutions which contain two arbitrary function μ(t) and ν(t). We find that the arbitrary function μ(t) contained in the solutions can be rewritten in terms of the redshift z as a new arbitrary function f(z). We further show that this new arbitrary function f(z) can be solved for four known parameterized equations of state of dark energy. Then 5D models can be reconstructed and the evolution of the density and deceleration parameters of the universe can be determined.

2012 ◽  
Vol 27 (36) ◽  
pp. 1250210 ◽  
Author(s):  
I. BREVIK ◽  
V. V. OBUKHOV ◽  
K. E. OSETRIN ◽  
A. V. TIMOSHKIN

Specific dark energy models, leading to the Little Rip (LR) cosmology in the far future, are investigated. Conditions for the occurrence of LR in terms of the parameters present in the proposed equation of state for the dark energy cosmic fluid are studied. Estimates about the time needed before the occurrence of the small singularity in the standard LR model in which the universe approaches the de Sitter spacetime asymptotically, are given.


2013 ◽  
Vol 28 (37) ◽  
pp. 1350172 ◽  
Author(s):  
I. BREVIK ◽  
A. V. TIMOSHKIN ◽  
Y. RABOCHAYA

We consider Little Rip (LR) and Pseudo Rip (PR) cosmological models with two interacting ideal fluids, corresponding to dark energy and dark matter. The interaction between the dark energy and the dark matter fluid components is described in terms of the parameters in the equations of state for the LR and PR universes. In contrast to a model containing only a pure dark energy, the presence of the interaction term between the fluid components in the gravitational equations leads to a modification of the equation of state parameters. The properties of the early universe in this formalism are pointed out.


2005 ◽  
Vol 22 (4) ◽  
pp. 315-325 ◽  
Author(s):  
Luke Barnes ◽  
Matthew J. Francis ◽  
Geraint F. Lewis ◽  
Eric V. Linder

AbstractObservational evidence indicating that the expansion of the universe is accelerating has surprised cosmologists in recent years. Cosmological models have sought to explain this acceleration by incorporating ‘dark energy’, of which the traditional cosmological constant is just one possible candidate. Several cosmological models involving an evolving equation of state of the dark energy have been proposed, as well as possible energy exchange to other components, such as dark matter. This paper summarizes the forms of the most prominent models and discusses their implications for cosmology and astrophysics. Finally, this paper examines the current and future observational constraints on the nature of dark energy.


2016 ◽  
Vol 31 (30) ◽  
pp. 1650175 ◽  
Author(s):  
M. Sharif ◽  
Kanwal Nazir

This paper is devoted to study evolution of the isotropic universe models in the framework of [Formula: see text] gravity ([Formula: see text] represents torsion scalar and [Formula: see text] is the teleparallel equivalent of the Gauss–Bonnet (GB) term). We construct [Formula: see text] models by taking different eras of the universe like non-relativistic and relativistic matter eras, dark energy (DE) dominated era and their combinations. It is found that the reconstructed models indicate decreasing behavior for DE dominated era and its combination with other eras. We also discuss stability of each reconstructed model. Finally, we evaluate equation of state (EoS) parameter by considering two models and study its behavior graphically.


2006 ◽  
Vol 15 (02) ◽  
pp. 189-198 ◽  
Author(s):  
P. S. DEBNATH ◽  
B. C. PAUL

We consider the evolution of a flat Friedmann–Roberstson–Walker Universe in a higher derivative theory, including αR2terms for the Einstein–Hilbert action in the presence of variable gravitational and cosmological constants. We study the evolution of the gravitational and cosmological constants in the radiation and matter domination era of the universe. We present new cosmological solutions which are physically interesting for model building.


2007 ◽  
Vol 16 (10) ◽  
pp. 1573-1579
Author(s):  
CHENGWU ZHANG ◽  
LIXIN XU ◽  
YONGLI PING ◽  
HONGYA LIU

We use a parameterized equation of state (EOS) of dark energy to a 5D Ricci-flat cosmological solution and suppose the universe contains two major components: dark matter and dark energy. Using the recent observational datasets: the latest 182 type Ia Supernovae Gold data, the three-year WMAP CMB shift parameter and the SDSS baryon acoustic peak, we obtain the best fit values of the EOS and two major components' evolution. We find that the best fit EOS crosses -1 in the near past where z ≃ 0.07, the present best fit value of wx(0) < -1 and for this model, the universe experiences the acceleration at about z ≃ 0.5.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950184
Author(s):  
M. Umair Shahzad ◽  
Nadeem Azhar ◽  
Abdul Jawad ◽  
Shamaila Rani

The reconstruction scenario of well-established dark energy models such as pilgrim dark energy model and generalized ghost dark energy with Hubble horizon and [Formula: see text] models is being considered. We have established [Formula: see text] models and analyzed their viability through equation of state parameter and [Formula: see text] (where prime denotes derivative with respect to [Formula: see text]) plane. The equation of state parameter evolutes the universe in three different phases such as quintessence, vacuum and phantom. However, the [Formula: see text] plane also describes the thawing as well as freezing region of the universe. The recent observational data also favor our results.


2019 ◽  
Vol 34 (11) ◽  
pp. 1950086 ◽  
Author(s):  
M. Abdollahi Zadeh ◽  
A. Sheykhi ◽  
H. Moradpour

Using the non-extensive Tsallis entropy and the holographic hypothesis, we propose a new dark energy (DE) model with timescale as infrared (IR) cutoff. Considering the age of the Universe as well as the conformal time as IR cutoffs, we investigate the cosmological consequences of the proposed DE models and study the evolution of the Universe filled by a pressureless matter and the obtained DE candidates. We find that although this model can describe the late time acceleration and the density, deceleration and the equation of state parameters show satisfactory behavior by themselves, these models are classically unstable unless the interaction between the two dark sectors of the Universe is taken into account. In addition, the results of the existence of a mutual interaction between the cosmos sectors are also addressed. We find out that the interacting models are stable at the classical level which is in contrast to the original interacting agegraphic dark energy models which are classically unstable [K. Y. Kim, H. W. Lee and Y. S. Myung, Phys. Lett. B 660, 118 (2008)].


2009 ◽  
Vol 18 (09) ◽  
pp. 1331-1342 ◽  
Author(s):  
WEN ZHAO

We investigate the attractor solution in the coupled Yang–Mills field dark energy models with the general interaction term, and obtain the constraint equations for the interaction if the attractor solution exists. The research also shows that, if the attractor solution exists, the equation of state of dark energy must evolve from wy > 0 to wy ≤ -1, which is slightly suggested by the observation. At the same time, the total equation of state in the attractor solution is w tot = -1, the universe is a de Sitter expansion, and the cosmic big rip is naturally avoided. These features are all independent of the interacting forms.


2007 ◽  
Vol 16 (10) ◽  
pp. 1641-1651 ◽  
Author(s):  
RAM GOPAL VISHWAKARMA

Dark energy and the accelerated expansion of the universe have been the direct predictions of the distant supernovae Ia observations which are also supported, indirectly, by the observations of the CMB anisotropies, gravitational lensing and the studies of galaxy clusters. Today these results are accommodated in what has become the concordance cosmology: a universe with flat spatial sections t = constant with about 70% of its energy in the form of Einstein's cosmological constant Λ and about 25% in the form of dark matter (made of perhaps weakly-interacting massive particles). Though the composition is weird, the theory has shown remarkable successes at many fronts. However, we find that as more and more supernovae Ia are observed, more accurately and towards higher redshift, the probability that the data are well-explained by the cosmological models decreases alarmingly, finally ruling out the concordance model at more than 95% confidence level. This raises doubts against the "standard candle"-hypothesis of the supernovae Ia and their use in constraining the cosmological models. We need a better understanding of the entire SN Ia phenomenon in order to extract cosmological consequences from them.


Sign in / Sign up

Export Citation Format

Share Document