scholarly journals STATEFINDER PARAMETERS FOR THE QUANTUM EFFECTIVE YANG–MILLS CONDENSATE DARK ENERGY MODEL

2009 ◽  
Vol 18 (05) ◽  
pp. 797-807 ◽  
Author(s):  
MINGLEI TONG ◽  
YANG ZHANG ◽  
TIANYANG XIA

The quantum effective Yang–Mills condensate (YMC) dark energy model has some distinctive features so that it naturally solves the coincidence problem and, at the same time, is able to give an equation of state w crossing -1. In this work we further employ the statefinder pair (r,s), introduced by Sahni et al., to diagnose the YMC model for three cases: the noncoupling, the YMC decaying into matter only, and the YMC decaying into both matter and radiation. The trajectories (r,s) and (r,q), and the evolutions r(z) and s(z), are explicitly presented. It is found that the YMC model in all three cases has r ≃ 1 for z < 10 and s ≃ 0 for z < 5 with only small deviations, ≃ 0.02, quite close to the cosmological constant model (LCDM), but is obviously differentiated from other dark energy models, such as quiessence or kinessence.

2008 ◽  
Vol 17 (08) ◽  
pp. 1245-1254 ◽  
Author(s):  
WEN ZHAO

We study the statefinder parameters in the Yang–Mills condensate dark energy models, and find that the evolving trajectories of these models are different from those of other dark energy models. We also define two eigenfunctions of the Yang–Mills condensate dark energy models. The values of these eigenfunctions are quite close to zero if the equation of state of the Yang–Mills condensate is not far from -1, which can be used to simply differentiate between the Yang–Mills condensate models and other dark energy models.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
M. Younas ◽  
Abdul Jawad ◽  
Saba Qummer ◽  
H. Moradpour ◽  
Shamaila Rani

Recently, Tsallis, Rényi, and Sharma-Mittal entropies have widely been used to study the gravitational and cosmological setups. We consider a flat FRW universe with linear interaction between dark energy and dark matter. We discuss the dark energy models using Tsallis, Rényi, and Sharma-Mittal entropies in the framework of Chern-Simons modified gravity. We explore various cosmological parameters (equation of state parameter, squared sound of speed ) and cosmological plane (ωd-ωd′, where ωd′ is the evolutionary equation of state parameter). It is observed that the equation of state parameter gives quintessence-like nature of the universe in most of the cases. Also, the squared speed of sound shows stability of Tsallis and Rényi dark energy model but unstable behavior for Sharma-Mittal dark energy model. The ωd-ωd′ plane represents the thawing region for all dark energy models.


2006 ◽  
Vol 15 (06) ◽  
pp. 869-877 ◽  
Author(s):  
HUI LI ◽  
ZONG-KUAN GUO ◽  
YUAN-ZHONG ZHANG

We investigate a kind of holographic dark energy model with a future event horizon being IR cutoff and the equation of state -1. In this model, the constraint on the equation of state automatically specifies an interaction between matter and dark energy. With this interaction included, an accelerating expansion is obtained as well as the transition from deceleration to acceleration. It is found that there exists a stable tracker solution for the numerical parameter d > 1, and d smaller than one will not lead to a physical solution. This model provides another possible phenomenological framework to alleviate the cosmological coincidence problem in the context of holographic dark energy. Some properties of the evolution which are relevant to cosmological parameters are also discussed.


2005 ◽  
Vol 14 (11) ◽  
pp. 1873-1881 ◽  
Author(s):  
PUXUN WU ◽  
HONGWEI YU

We perform in this paper a statefinder diagnostic to a dark energy model with two scalar fields, called "quintom," where one of the scalar fields has a canonical kinetic energy term and the other has a negative one. Several kinds of potentials are discussed. Our results show that the statefinder diagnostic can differentiate quintom model with other dark energy models.


2006 ◽  
Vol 21 (16) ◽  
pp. 1305-1311 ◽  
Author(s):  
PUXUN WU ◽  
HONGWEI YU

The statefinder parameters were introduced recently to differentiate different dark energy models. In this paper we perform a statefinder diagnostic to the phantom dark energy model with two different phantom field potentials. Our results show that the statefinder diagnostic is rather robust in differentiating not only different dark energy models but also the same kind of models with different potentials which lead to different fate of the universe.


2019 ◽  
Vol 35 (10) ◽  
pp. 2050063
Author(s):  
M. Sharif ◽  
Saadia Saba

The aim of this paper is to study the reconstruction paradigm for both ghost as well as generalized ghost dark energy models in the context of [Formula: see text] gravity. To accomplish this, we use correspondence scenario for pressureless flat FRW universe with power-law scale factor. The cosmological behavior of reconstructed models is analyzed through graphical analysis of deceleration, equation of state, squared speed of sound parameters and phase planes. It is found that the deceleration parameter represents accelerated epoch for both models whereas equation of state parameter indicates phantom era of the universe for ghost dark energy model and quintessence for its generalized version. The phase planes [Formula: see text] and [Formula: see text] indicate the freezing region with phantom phase for both reconstructed dark energy models. We conclude that the squared speed of sound parameter leads to the stability of generalized ghost dark energy model only.


2007 ◽  
Vol 16 (11) ◽  
pp. 1735-1744 ◽  
Author(s):  
WEN ZHAO ◽  
DONGHUI XU

The evolution of the electric and magnetic components in an effective Yang–Mills condensate dark energy model is investigated. If the electric field is dominant, the magnetic component disappears with the expansion of the Universe. The total YM condensate tracks the radiation in the earlier Universe, and later it becomes wy ~ -1 and is thus similar to the cosmological constant. So the cosmic coincidence problem can be avoided in this model. However, if the magnetic field is dominant, wy > 1/3 holds for all time, suggesting that it cannot be a candidate for the dark energy in this case.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950184
Author(s):  
M. Umair Shahzad ◽  
Nadeem Azhar ◽  
Abdul Jawad ◽  
Shamaila Rani

The reconstruction scenario of well-established dark energy models such as pilgrim dark energy model and generalized ghost dark energy with Hubble horizon and [Formula: see text] models is being considered. We have established [Formula: see text] models and analyzed their viability through equation of state parameter and [Formula: see text] (where prime denotes derivative with respect to [Formula: see text]) plane. The equation of state parameter evolutes the universe in three different phases such as quintessence, vacuum and phantom. However, the [Formula: see text] plane also describes the thawing as well as freezing region of the universe. The recent observational data also favor our results.


2019 ◽  
Vol 34 (11) ◽  
pp. 1950086 ◽  
Author(s):  
M. Abdollahi Zadeh ◽  
A. Sheykhi ◽  
H. Moradpour

Using the non-extensive Tsallis entropy and the holographic hypothesis, we propose a new dark energy (DE) model with timescale as infrared (IR) cutoff. Considering the age of the Universe as well as the conformal time as IR cutoffs, we investigate the cosmological consequences of the proposed DE models and study the evolution of the Universe filled by a pressureless matter and the obtained DE candidates. We find that although this model can describe the late time acceleration and the density, deceleration and the equation of state parameters show satisfactory behavior by themselves, these models are classically unstable unless the interaction between the two dark sectors of the Universe is taken into account. In addition, the results of the existence of a mutual interaction between the cosmos sectors are also addressed. We find out that the interacting models are stable at the classical level which is in contrast to the original interacting agegraphic dark energy models which are classically unstable [K. Y. Kim, H. W. Lee and Y. S. Myung, Phys. Lett. B 660, 118 (2008)].


2009 ◽  
Vol 18 (09) ◽  
pp. 1331-1342 ◽  
Author(s):  
WEN ZHAO

We investigate the attractor solution in the coupled Yang–Mills field dark energy models with the general interaction term, and obtain the constraint equations for the interaction if the attractor solution exists. The research also shows that, if the attractor solution exists, the equation of state of dark energy must evolve from wy > 0 to wy ≤ -1, which is slightly suggested by the observation. At the same time, the total equation of state in the attractor solution is w tot = -1, the universe is a de Sitter expansion, and the cosmic big rip is naturally avoided. These features are all independent of the interacting forms.


Sign in / Sign up

Export Citation Format

Share Document