scholarly journals Active galactic nuclei and their role in galaxy evolution: The infrared perspective

2014 ◽  
Vol 23 (07) ◽  
pp. 1430015 ◽  
Author(s):  
K. I. Caputi

The remarkable progress made in infrared (IR) astronomical instruments over the last 10–15 years has radically changed our vision of the extragalactic IR sky, and overall understanding of galaxy evolution. In particular, this has been the case for the study of active galactic nuclei (AGN), for which IR observations provide a wealth of complementary information that cannot be derived from data in other wavelength regimes. In this review, I summarize the unique contribution that IR astronomy has recently made to our understanding of AGN and their role in galaxy evolution, including both physical studies of AGN at IR wavelengths, and the search for AGN among IR galaxies in general. Finally, I identify and discuss key open issues that should be possible to address with forthcoming IR telescopes.

Author(s):  
L. Spinoglio ◽  
A. Alonso-Herrero ◽  
L. Armus ◽  
M. Baes ◽  
J. Bernard-Salas ◽  
...  

AbstractIR spectroscopy in the range 12–230 μm with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA’s large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z ~ 6.


1997 ◽  
Vol 163 ◽  
pp. 600-609
Author(s):  
J. H. Hough

AbstractOne of the main uses of polarimetry over the last decade, has been to identify the nature of AGN that are normally hidden from direct view by an optically and geometrically thick torus, and thereby to unify different classes of AGN. Of growing importance is the role that polarimetry can play in our understanding of the properties and structure of AGN on a size scale which cannot be resolved directly. We review the progress being made in understanding the role of disks, extended scattering regions, and the obscuring torus in AGN.


2018 ◽  
Vol 14 (A30) ◽  
pp. 78-81
Author(s):  
Kristina Nyland

AbstractEnergetic feedback by Active Galactic Nuclei (AGN) plays an important evolutionary role in the regulation of star formation (SF) on galactic scales. However, the effects of this feedback as a function of redshift and galaxy properties such as mass, environment and cold gas content remain poorly understood. The broad frequency coverage (1 to 116 GHz), high collecting area (about ten times higher than the Karl G. Jansky Very Large Array), and superb angular resolution (maximum baselines of at least a few hundred km) of the proposed next-generation Very Large Array (ngVLA) are uniquely poised to revolutionize our understanding of AGN and their role in galaxy evolution.


High energy cosmic neutrinos can be produced by protons and nuclei accelerated in cosmic sources (‘acceleration neutrinos) as well as by relic Big Bang particles, cosmic strings, etc. (neutrinos of non-acceleration origin). The most promising ‘acceleration’ sources of neutrinos are supernovae in our Galaxy and active galactic nuclei (AGN). Detectable diffuse fluxes of ‘ acceleration ’ neutrinos can be produced by AGN and during the ‘bright phase’ of galaxy evolution. During the past few years it has been realized that the detectable flux of high energy neutrinos can be also produced by the relic Big Bang particles. The possible sources are annihilation of the neutralinos accumulated inside the Earth and the Sun, decay of neutralinos (due to the weak breaking of R-parity), and the decay of exotic long-lived particles from the Big Bang.


2011 ◽  
Vol 7 (S284) ◽  
pp. 183-192
Author(s):  
Q. Daniel Wang

AbstractGalactic X-ray emission is a manifestation of various high-energy phenomena and processes. The brightest X-ray sources are typically accretion-powered objects: active galactic nuclei and low- or high-mass X-ray binaries. Such objects with X-ray luminosities of ≳ 1037 ergs s−1 can now be detected individually in nearby galaxies. The contributions from fainter discrete sources (including cataclysmic variables, active binaries, young stellar objects, and supernova remnants) are well correlated with the star formation rate or stellar mass of galaxies. The study of discrete X-ray sources is essential to our understanding of stellar evolution, dynamics, and end-products as well as accretion physics. With the subtraction of the discrete source contributions, one can further map out truly diffuse X-ray emission, which can be used to trace the feedback from active galactic nuclei, as well as from stars, both young and old, in the form of stellar winds and supernovae. The X-ray emission efficiency, however, is only about 1% of the energy input rate of the stellar feedback alone. The bulk of the feedback energy is most likely gone with outflows into large-scale galactic halos. Much is yet to be investigated to comprehend the role of such outflows in regulating the ecosystem, hence the evolution of galaxies. Even the mechanism of the diffuse X-ray emission remains quite uncertain. A substantial fraction of the emission cannot arise directly from optically-thin thermal plasma, as commonly assumed, and most likely originates in its charge exchange with neutral gas. These uncertainties underscore our poor understanding of the feedback and its interplay with the galaxy evolution.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Stefano Bianchi ◽  
Roberto Maiolino ◽  
Guido Risaliti

Unification Models of Active Galactic Nuclei postulate that all the observed differences between type 1 and type 2 objects are due to orientation effects with respect to the line of sight to the observer. The key ingredient of these models is the obscuring medium, historically envisaged as a toroidal structure on a parsec scale. However, many results obtained in the last few years are clearly showing the need for a more complex geometrical distribution of the absorbing media. In this paper, we review the various pieces of evidence for obscuring media on different scales, from the vicinity of the black hole to the host galaxy, in order to picture an updated unification scenario explaining the complex observed phenomenology. We conclude by mentioning some of the open issues.


2019 ◽  
Vol 15 (S356) ◽  
pp. 299-301
Author(s):  
Biressa Tolu ◽  
Abate Feyissa

AbstractIrrespective of whether Active Galactic Nuclei (AGN) is cored with Supermassive Black Holes (SMBH) or not, there is a general consensus that observations indicate that the AGN plays fundamental role in galaxy evolution. The accretion disc powered fueling of the AGN and counter-feedback on its environment in the form of stress-energy-momentum along the radial component and an associated polodial jets seems viable model. On the theoretical ground there is no unified theory that compromise the observations. But there are pull of such diverse physics simulated to describe the observational works. So, there is unsettled theoretical framework how the activity of the AGN plays role in the evolution of host galaxy. Motivated by this we studied the role of AGN on its host galaxy evolution where General relativistic (GR) Magnetohydrodynamics (MHD) equation is considered to derive radial pressure that invokes star forming cold gases. Methodologically the central engine of the AGN is considered with SMBH/pseudo-SMBH. Locally, around the AGN, Reissner-Nordstrom-de Sitter metric is considered that reduces to the Schwarzschoild-de Sitter (SdS) background. Geometrically, a simple spherical geometry is superimposed with central disc structure assumed by cored void mass ablating model. The results of the work indicates that the AGN plays role in galaxy evolution, especially in the nearby environment. Also we report that the adjacent envelope to the AGN seems quiet with no activity in formation.


2020 ◽  
Vol 15 (S359) ◽  
pp. 307-311
Author(s):  
Anelise Audibert ◽  
Françoise Combes ◽  
Santiago García-Burillo ◽  
Kalliopi Dasyra

AbstractOur aim is to explore the close environment of Active Galactic Nuclei (AGN) and its connection to the host galaxy through the morphology and dynamics of the cold gas inside the central kpc in nearby AGN. We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of AGN feeding and feedback caught in action in NGC613 and NGC1808 at high resolution (few pc), part of the NUclei of GAlaxies (NUGA) project. We detected trailing spirals inside the central 100 pc, efficiently driving the molecular gas into the SMBH, and molecular outflows driven by the AGN. We present preliminary results of the impact of massive winds induced by radio jets on galaxy evolution, based on observations of radio galaxies from the ALMA Radio-source Catalogue.


2005 ◽  
Vol 631 (2) ◽  
pp. 762-772 ◽  
Author(s):  
Jong‐Hak Woo ◽  
C. Megan Urry ◽  
Roeland P. van der Marel ◽  
Paulina Lira ◽  
Jose Maza

2020 ◽  
Vol 494 (2) ◽  
pp. 1784-1816
Author(s):  
D Asmus ◽  
C L Greenwell ◽  
P Gandhi ◽  
P G Boorman ◽  
J Aird ◽  
...  

ABSTRACT To answer major questions on supermassive black hole (SMBH) and galaxy evolution, a complete census of SMBH growth, i.e. active galactic nuclei (AGN), is required. Thanks to all-sky surveys by the Wide-field Infrared Survey Explorer (WISE) and the Spectrum-Roentgen-Gamma (SRG) missions, this task is now feasible in the nearby Universe. We present a new survey, the Local AGN Survey (LASr), with the goal of identifying AGN unbiased against obscuration and determining the intrinsic Compton-thick (CT) fraction. We construct the most complete all-sky galaxy sample within 100 Mpc ($90{{\ \rm per\ cent}}$ completeness for log (M*/M⊙) ∼ 9.4), four times deeper than the current reference, the Two Micron All-Sky Survey Redshift Survey (2MRS), which misses ${\sim}20{{\ \rm per\ cent}}$ of known luminous AGN. These 49k galaxies serve as parent sample for LASr, called LASr-GPS. It contains 4.3k already known AGN, $\ge 82{{\ \rm per\ cent}}$ of these are estimated to have $L^\mathrm{nuc}(12\, \mu \mathrm{m})\lt 10^{42.3}$ erg s−1, i.e. are low-luminosity AGN. As a first method for identifying Seyfert-like AGN, we use WISE-based infrared colours, finding 221 galaxies at $L^\mathrm{nuc}(12\, \mu \mathrm{m})\ge 10^{42.3}$ erg s−1 to host an AGN at $90{{\ \rm per\ cent}}$ reliability. This includes 61 new AGN candidates and implies an optical type 2 fraction of 50–71 per cent. We quantify the efficiency of this technique and estimate the total number of AGN with $L^\mathrm{int}(\rm {2-10\,keV})\ge 10^{42}$ erg s−1 in the volume to be $362^{+145}_{-116}$ ($8.6^{+3.5}_{-2.8}\, \times$ 10−5 Mpc−3). X-ray brightness estimates indicate the CT fraction to be 40–55 per cent to explain the Swift non-detections of the infrared selected objects. One third of the AGN within 100 Mpc remain to be identified, and we discuss the prospects for the eROSITA all-sky survey to detect them.


Sign in / Sign up

Export Citation Format

Share Document