scholarly journals Parametric resonance of entropy perturbations in massless preheating

2015 ◽  
Vol 24 (11) ◽  
pp. 1550082 ◽  
Author(s):  
Hossein Bazrafshan Moghaddam ◽  
Robert H. Brandenberger ◽  
Yi-Fu Cai ◽  
Elisa G. M. Ferreira

In this paper, we revisit the question of possible preheating of entropy modes in a two-field model with a massless inflaton coupled to a matter scalar field. Using a perturbative approximation to the covariant method we demonstrate that there is indeed a parametric instability of the entropy mode which then at second-order leads to exponential growth of the curvature fluctuation on super-Hubble scale. Back-reaction effects shut off the induced curvature fluctuations, but possibly not early enough to prevent phenomenological problems. This confirms previous results obtained using different methods and resolves a controversy in the literature.

2020 ◽  
Vol 29 (11) ◽  
pp. 2041016
Author(s):  
Carlos Herdeiro ◽  
Eugen Radu

We review recent results on the existence of static black holes (BHs) without spatial isometries in four spacetime dimensions and propose a general framework for their study. These configurations are regular on and outside a horizon of spherical topology. Two different mechanisms allowing for their existence are identified. The first one relies on the presence of a solitonic limit of the BHs; when the solitons have no spatial isometries, the BHs, being a nonlinear bound state between the solitons and a horizon, inherit this property. The second one is related to BH scalarization, and the existence of zero modes of the scalar field without isometries around a spherical horizon. When the zero modes have no spatial isometries, the back-reaction of their nonlinear continuation makes the scalarized BHs inherit the absence of spatial continuous symmetries. A number of general features of the solutions are discussed together with possible generalizations.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Andronikos Paliathanasis ◽  
Genly Leon ◽  
John D. Barrow

AbstractWe study the Einstein-aether theory in Weyl integrable geometry. The scalar field which defines the Weyl affine connection is introduced in the gravitational field equation. We end up with an Einstein-aether scalar field model where the interaction between the scalar field and the aether field has a geometric origin. The scalar field plays a significant role in the evolution of the gravitational field equations. We focus our study on the case of homogeneous and isotropic background spacetimes and study their dynamical evolution for various cosmological models.


2019 ◽  
Vol 11 (04) ◽  
pp. 1950034 ◽  
Author(s):  
Elluri Venkata Prasad ◽  
Shishir Kumar Sahu

The present investigation deals with the assessment of parametric resonance behavior of new aircraft material, i.e., woven fiber metal laminated (FML) plates subjected to in-plane static and harmonic loading using finite element (FE) technique and Bolotin’s method. In this analysis, a four-node isoparametric element with five degrees of freedom per node is adopted. Based on the first-order Reissner–Mindlin theory, the parametric instability of FML plate subjected to in-plane harmonic loading is examined. A MATLAB code is developed for the parametric study on the dynamic stability of FML plates. The reliability of present formulation is checked by comparing numerical results obtained from present FE analysis with the published researches in the field. The influences of several factors, viz. static load factor, aspect ratio, length-to-thickness ratio, number of layers, ply orientation and boundary conditions on the dynamic instability regions are discussed. Significant variations of these factors on dynamic instability zones of FML plates are observed. The instability zones can be used as guidelines for the prediction of the dynamic behavior of FML plates.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850087 ◽  
Author(s):  
Abdul Jawad ◽  
Shahid Chaudhary

Warm generalized Chaplygin gas inflation is being studied by assuming power-law plateau and inverse symmetric potentials with standard scalar field model. We consider strong dissipative regime with generalized dissipative coefficient and extract the various inflationary parameters such as scalar power spectrum, spectral index, tensor-to-scalar ratio and running of spectral index. It is found that both inflationary potentials favor the strong dissipative regime. Also, we construct the [Formula: see text]–[Formula: see text] (running of spectral index versus spectral index) and [Formula: see text]–[Formula: see text] (tensor-to-scalar ratio versus spectral index) planes and found that the trajectories of these planes favor WMAP 7 [Formula: see text] WMAP 9 and latest Planck data.


2018 ◽  
Vol 15 (02) ◽  
pp. 1850027 ◽  
Author(s):  
Heba Sami ◽  
Neo Namane ◽  
Joseph Ntahompagaze ◽  
Maye Elmardi ◽  
Amare Abebe

We present a reconstruction technique for models of [Formula: see text] gravity from the Chaplygin scalar field in flat de Sitter spacetimes. Exploiting the equivalence between [Formula: see text] gravity and scalar–tensor (ST) theories, and treating the Chaplygin gas (CG) as a scalar field model in a universe without conventional matter forms, the Lagrangian densities for the [Formula: see text] action are derived. Exact [Formula: see text] models and corresponding scalar field potentials are obtained for asymptotically de Sitter spacetimes in early and late cosmological expansion histories. It is shown that the reconstructed [Formula: see text] models all have General Relativity (GR) as a limiting solution.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kh. Saaidi ◽  
A. Mohammadi ◽  
T. Golanbari

Slow-roll inflationary scenario is considered in noncanonical scalar field model supposing a power-law function for kinetic term and using two formalisms. In the first approach, the potential is picked out as a power-law function, that is, the most common approach in studying inflation. Hamilton-Jacobi approach is selected as the second formalism, so that the Hubble parameter is introduced as a function of scalar field instead of the potential. Employing the last observational data, the free parameters of the model are constrained, and the predicted form of the potential and attractor behavior of the model are studied in detail.


2007 ◽  
Vol 590 ◽  
pp. 265-294 ◽  
Author(s):  
XUESONG WU ◽  
P. A. STEWART ◽  
S. J. COWLEY

This paper is concerned with the nonlinear interaction between a planar and a pair of oblique Tollmien–Schlichting (T-S) waves which are phase-locked in that they travel with (nearly) the same phase speed. The evolution of such a disturbance is described using a high-Reynolds-number asymptotic approach in the so-called ‘upper--branch’ scaling regime. It follows that there exists a well-defined common critical layer (i.e. a thin region surrounding the level at which the basic flow velocity equals the phase speed of the waves to leading order) and the dominant interactions take place there. The disturbance is shown to evolve through several distinctive stages. In the first of these, the critical layer is in equilibrium and viscosity dominated. If a small mismatching exists in the phase speeds, the interaction between the planar and oblique waves leads directly to super-exponential growth/decay of the oblique modes. However, if the modes are perfectly phase-locked, the interaction in the first instance affects only the phase of the amplitude function of the oblique modes (so causing rapid wavelength shortening), while the modulus of the amplitude still evolves exponentially until the wavelength shortening produces a back reaction on the modulus (which then induces a super-exponential growth). Whether or not there is a small mismatch or a perfect match in the phase speeds, once the growth rate of the oblique modes becomes sufficiently large, the disturbance enters a second stage, in which the critical layer becomes both non-equilibrium and viscous in nature. The oblique modes continue to experience super-exponential growth, albeit of a different form from that in the previous stages, until the self-interaction between them, as well as their back effect on the planar mode, becomes important. At that point, the disturbance enters a third, fully interactive stage, during which the development of the disturbance is governed by the amplitude equations with the same nonlinear terms as previously derived for the phase-locked interaction of Rayleigh instability waves. The solution develops a singularity, leading to the final stage where the flow is governed by fully nonlinear three-dimensional inviscid triple-deck equations. The present work indicates that seeding a planar T-S wave can enhance the amplification of all oblique modes which share approximately its phase speed.


Sign in / Sign up

Export Citation Format

Share Document