Cosmological consequences and thermodynamics of modified gravity with extended nonminimal derivative couplings

2019 ◽  
Vol 28 (11) ◽  
pp. 1950137 ◽  
Author(s):  
Abdul Jawad ◽  
M. Bilal Amin ◽  
Shamaila Rani

We consider the newly proposed gravitational modifications that go beyond Horndeski’s theory, named as theories with extended nonminimal derivative couplings. By these modifications, the coefficient functions depend on the scalar field and its kinetic energy. These theories become ghost-free in cosmological background. We consider the flat FRW universe and explore the equation-of-state parameter, [Formula: see text]–[Formula: see text] plane and the squared speed of sound. The equation-of-state parameter exhibits phantom behavior of the universe, [Formula: see text]–[Formula: see text] plane represents the freezing region of the universe while the squared speed of sound denotes the stability of the model for the specific choice of constant parameters. Also, we investigate the validity of generalized second law of thermodynamics on the Hubble horizon taking into account the Bekenstein, power-law, Renyi and logarithmic corrections to the horizon entropy.

2019 ◽  
Vol 34 (07n08) ◽  
pp. 1950055 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Nadeem Azhar

Among various dark energy models, Tsallis holographic dark energy model shows the dynamical enthusiasm to describe the transition phase of the universe. In this paper, we consider Tsallis holographic dark energy with event and apparent horizon as an infrared cutoff in the framework of dynamical Chern–Simon modified gravity and non-flat FRW universe. We explore Hubble, equation of state and deceleration parameters and found that Hubble parameter lies in the range [Formula: see text] and [Formula: see text] for event and apparent horizon trajectories, respectively. It is mentioned here that the equation of state parameter lies within the range [Formula: see text] (event) and [Formula: see text] (apparent). Also, deceleration parameter for both cases show accelerated and decelerated phase of universe as well as cosmological constant. Moreover, we also checked the stability of our model through square speed of sound, which shows the positive behavior (exhibits the stability of the model). Finally, we observe that the generalized second law of thermodynamics remains valid in both cases of horizon.


2019 ◽  
Vol 16 (06) ◽  
pp. 1950081
Author(s):  
Ayesha Iqbal ◽  
Abdul Jawad

The cosmological scenario is built up within the framework of scalar field model possessing a noncanonical kinetic term in loop quantum gravity. The noncanonical scalar field is permitted to interact with dark matter field by assuming a specific form of coupling term. The equation of state parameter is set to be constant as well as variable (Chevallier–Polarski–Linder parametrization) and evaluated the behavior of universe through deceleration parameter and weak energy condition. These parameters favor the accelerated expansion of the universe for three values of equation of state parameter in both cases allowed by observational data. The squared speed of sound leads to the stability of the underlying models in both forms of equation of state parameter. Moreover, the validity of generalized second law of thermodynamics is analyzed by using first law of thermodynamics and assume the universe to be enclosed by apparent horizon. The Bekenstein, logarithmic and power-law entropy is being considered as entropy of horizon. The thermodynamic equilibrium condition is also discussed for all three cases of entropies. The generalized second law of thermodynamics and thermal equilibrium condition is satisfied for all the three types of entropies.


2020 ◽  
Vol 17 (11) ◽  
pp. 2050170
Author(s):  
Sayani Maity ◽  
Ujjal Debnath

The purpose of this work is to study the Tsallis, Rényi and Sharma–Mittal holographic dark energy models in order to evaluate the accelerated expansion of the Universe. In this regard, we consider the modified field equations for logarithmic and power law versions of entropy corrected models in FRW Universe filled with interacting dark energy and cold dark matter within the framework of Hořava–Lifshitz gravity. Employing the Nojiri and Odintsov (NO) cut-off as infrared cutoff, we explore the nature of the different cosmological quantities like the equation of state parameter, squared speed of sound and [Formula: see text]–[Formula: see text] cosmological plane during the cosmic evolution. The equation of state parameter shows the different stages of the evolution of the Universe for the considered models. By analyzing the cosmological plane [Formula: see text]–[Formula: see text], we obtain the freezing region for these models. Also, due to the study of squared speed of sound, we show the classically stable behavior of the considered models.


2021 ◽  
Vol 36 (10) ◽  
pp. 2150069
Author(s):  
Abdul Jawad ◽  
Sidra Saleem ◽  
Saba Qummer

We examine thermodynamically an extra driving term for the flat universe by applying Sharma Mittal entropy to Padmanabhan’s holographic equipartition law. Deviations from the Bekenstein–Hawking entropy by using this law, we generate an extra driving in the acceleration equation. By using the constant and parametrized equation of state parameter, we investigate the different cosmological parameters like deceleration parameter, squared speed of sound, Om-diagnostic and statefinder parameter through graphical approach. We observe compatible results with current observational data in both models. Generalized second law of thermodynamics also remains valid in both cases.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Abdul Jawad ◽  
Sadaf Butt ◽  
Shamaila Rani ◽  
Khadija Asif

AbstractIn the framework of fractal universe, the unified models of dark energy and dark matter are being presented with the background of homogenous and isotropic FLRW geometry. The aspects of fractal cosmology helps in better understanding of the universe in different dimensions. Relationship between the squared speed of the sound and the equation of state parameter is the key feature of these models. We have used constant as well as variable forms of speed of sound and express it as a function of equation of state parameter. By utilizing the four different forms of speed of sound, we construct the energy densities and pressures for these models and then various cosmological parameters like hubble parameter, EoS parameter, deceleration parameter and Om- diagnostic are investigated. Graphical analysis of these parameters show that in most of the cases EoS parameters and trajectories of Om-diagnostic corresponds to the quintessence like nature of the universe and the deceleration parameters represent accelerated and decelerated phase. In the end, we remark that cosmological analysis of these models indicates that these models correspond to different well known dark energy models.


Open Physics ◽  
2013 ◽  
Vol 11 (7) ◽  
Author(s):  
Esmaeil Ebrahimi ◽  
Ahmad Sheykhi ◽  
Hamzeh Alavirad

AbstractWe investigate the generalized Quantum Chromodynamics (QCD) ghost model of dark energy in the framework of Einstein gravity. First, we study the non-interacting generalized ghost dark energy in a flat Friedmann-Robertson-Walker (FRW) background. We obtain the equation of state parameter, w D = p/ρ, the deceleration parameter, and the evolution equation of the generalized ghost dark energy. We find that, in this case, w D cannot cross the phantom line (w D > −1) and eventually the universe approaches a de-Sitter phase of expansion (w D → −1). Then, we extend the study to the interacting ghost dark energy in both a flat and non-flat FRW universe. We find that the equation of state parameter of the interacting generalized ghost dark energy can cross the phantom line (w D < −1) provided the parameters of the model are chosen suitably. Finally, we constrain the model parameters by using the Markov Chain Monte Carlo (MCMC) method and a combined dataset of SNIa, CMB, BAO and X-ray gas mass fraction.


2019 ◽  
Vol 16 (07) ◽  
pp. 1950101
Author(s):  
Surajit Chattopadhyay ◽  
Soumyodipta Karmakar

The present paper reports a study on the [Formula: see text] gravity reconstruction scheme in the context of considering standard Chaplygin gas as tachyon scalar field model of dark energy. The solution for reconstructed [Formula: see text] gravity has been obtained from reconstructed potential and scalar field of tachyon based on the standard Chaplygin gas. It has been observed that the equation of state parameter due to the reconstructed torsion contribution to the density and pressure behaves like quintom and is consistent with the observational value of the equation of state parameter for the current universe. The reconstructed [Formula: see text] has then been tested for gravitational perturbation by deriving the frictional term, the effective mass and the sound speed parameter for the gravitational potential and it has been found to be stable against gravitational perturbations through positive value of the squared speed of sound. Finally, statefinder diagnostics has been carried out and the reconstructed [Formula: see text] gravity is found to interpolate between dust and [Formula: see text]CDM phases of the universe.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950184
Author(s):  
M. Umair Shahzad ◽  
Nadeem Azhar ◽  
Abdul Jawad ◽  
Shamaila Rani

The reconstruction scenario of well-established dark energy models such as pilgrim dark energy model and generalized ghost dark energy with Hubble horizon and [Formula: see text] models is being considered. We have established [Formula: see text] models and analyzed their viability through equation of state parameter and [Formula: see text] (where prime denotes derivative with respect to [Formula: see text]) plane. The equation of state parameter evolutes the universe in three different phases such as quintessence, vacuum and phantom. However, the [Formula: see text] plane also describes the thawing as well as freezing region of the universe. The recent observational data also favor our results.


2018 ◽  
Vol 27 (04) ◽  
pp. 1850041 ◽  
Author(s):  
Nasim Saba ◽  
Mehrdad Farhoudi

By studying the chameleon model during inflation, we investigate whether it can be a successful inflationary model, wherein we employ the common typical potential usually used in the literature. Thus, in the context of the slow-roll approximations, we obtain the e-folding number for the model to verify the ability of resolving the problems of standard big bang cosmology. Meanwhile, we apply the constraints on the form of the chosen potential and also on the equation of state parameter coupled to the scalar field. However, the results of the present analysis show that there is not much chance of having the chameleonic inflation. Hence, we suggest that if through some mechanism the chameleon model can be reduced to the standard inflationary model, then it may cover the whole era of the universe from the inflation up to the late time.


2017 ◽  
Vol 32 (33) ◽  
pp. 1750182 ◽  
Author(s):  
Ali İhsan Keskin ◽  
Irfan Acikgoz

In this study, the validity of the generalized second law of thermodynamics (GSLT) has been investigated in F(R, G) gravity. We consider that the boundary of the universe is surrounded by an apparent horizon in the spatially flat Friedmann–Robertson–Walker (FRW) universe, and we take into account the Hawking temperature on the horizons. The unified solutions of the field equations corresponding to gravity theory have been applied to the validity of the GSLT frame, and in this way, both the solutions have been verified and all the expansion history of the universe has been shown in a unified picture.


Sign in / Sign up

Export Citation Format

Share Document