THE MORPHOGENESIS OF HIGH SYMMETRY: THE SYMMETRIZATION THEOREM

1999 ◽  
Vol 07 (02) ◽  
pp. 159-211 ◽  
Author(s):  
CHRISTOPHER J. MARZEC

A multi-part theorem is presented concerning the morphogenesis of high-symmetry structures made of three-dimensional morphological units (MU's) free to move on the surface of a sphere. All parts of each MU interact non-specifically with the remainder of the structure, via an isotropic function of distance. Summing all interactions gives a net figure of merit, ℐ, that depends upon MU positions and orientations. The structure evolves via gradient dynamics, each MU moving down the local gradient of ℐ. The analysis is reresented with generality in Fourier space, which eases the expression of symmetry. Structures near symmetry, but far from a local minimum of ℐ, are analyzed. For each, a symmetrical configuration can be found, for which ℐ is an extremum with respect to symmetry-breaking perturbations. Under gradient dynamics, a quadratic measure of such deviations from symmetry decreases monotonically, anywhere in the large basin of attraction of a local minimum. Thus: high symmetry is an attractor. Application is made to icosahedral virus capsids. The Symmetrization Theorem shows that a stable capsid, maintained by non-specific interactions among its capsomeres, could arise generically in a "bottom-up" process. For animated evolutions that self-assemble into high symmetry, visit

1999 ◽  
Vol 07 (03) ◽  
pp. 353-427 ◽  
Author(s):  
CHRISTOPHER J. MARZEC

A theorem is presented concerning the morphogenesis of high-symmetry structures made of three-dimensional morphological units (MU's) free to move in three dimensions or constrained to a surface. All parts of each MU interact non-specifically with the rest of the structure, via an isotropic function of distance. Summing all interactions gives a net figure of merit, ℐ, that depends upon MU positions and orientations. A structure evolves via gradient dynamics, each MU moving down the local gradient of ℐ. The analysis is represented with generality in Fourier space. A "warping" from a configuration of MU's is a set of MU displacements and/or rotations that slightly perturb nearest neighbor relations; deviations can accrue across the structure, producing large global distortions. A warping behaves qualitatively like a small perturbation, so a warping from a stable equilibrium decays under gradient dynamics. Connection to the Symmetrization Theorem greatly extends the basin of attraction of stable symmetrical configurations. Warped configurations are equivalent as precursors of structure, which helps to understand assembly by accretion. Numerical illustrations are given in cylindrical geometry, for application to phyllotaxis; and in spherical geometry, for virus capsid structure. For animations of numerical evolutions that find high symmetry via unwarping, see


2018 ◽  
Vol 860 ◽  
pp. 739-766 ◽  
Author(s):  
Rémi Bourguet

The flow-induced vibrations of an elastically mounted circular cylinder, free to oscillate in an arbitrary direction and forced to rotate about its axis, are examined via two- and three-dimensional simulations, at a Reynolds number equal to 100, based on the body diameter and inflow velocity. The behaviour of the flow–structure system is investigated over the entire range of vibration directions, defined by the angle $\unicode[STIX]{x1D703}$ between the direction of the current and the direction of motion, a wide range of values of the reduced velocity $U^{\star }$ (inverse of the oscillator natural frequency) and three values of the rotation rate (ratio between the cylinder surface and inflow velocities), $\unicode[STIX]{x1D6FC}\in \{0,1,3\}$, in order to cover the reference non-rotating cylinder case, as well as typical slow and fast rotation cases. The oscillations of the non-rotating cylinder ($\unicode[STIX]{x1D6FC}=0$) develop under wake-body synchronization or lock-in, and their amplitude exhibits a bell-shaped evolution, typical of vortex-induced vibrations (VIV), as a function of $U^{\star }$. When $\unicode[STIX]{x1D703}$ is increased from $0^{\circ }$ to $90^{\circ }$ (or decreased from $180^{\circ }$ to $90^{\circ }$), the bell-shaped curve tends to monotonically increase in width and magnitude. For all angles, the flow past the non-rotating body is two-dimensional with formation of two counter-rotating spanwise vortices per cycle. The behaviour of the system remains globally the same for $\unicode[STIX]{x1D6FC}=1$. The principal effects of the slow rotation are a slight amplification of the VIV-like responses and widening of the vibration windows, as well as a limited asymmetry of the responses and forces about the symmetrical configuration $\unicode[STIX]{x1D703}=90^{\circ }$. The impact of the fast rotation ($\unicode[STIX]{x1D6FC}=3$) is more pronounced: VIV-like responses persist over a range of $\unicode[STIX]{x1D703}$ but, outside this range, the system is found to undergo a transition towards galloping-like oscillations characterised by amplitudes growing unboundedly with $U^{\star }$. A quasi-steady modelling of fluid forcing predicts the emergence of galloping-like responses as $\unicode[STIX]{x1D703}$ is varied, which suggests that they could be mainly driven by the mean flow. It, however, appears that flow unsteadiness and body motion remain synchronised in this vibration regime where a variety of multi-vortex wake patterns are uncovered. The interaction with flow dynamics results in deviations from the quasi-steady prediction. The successive steps in the evolution of the vibration amplitude versus $U^{\star }$, linked to wake pattern switch, are not captured by the quasi-steady approach. The flow past the rapidly-rotating, vibrating cylinder becomes three-dimensional over an interval of $\unicode[STIX]{x1D703}$ including the in-line oscillation configuration, with only a minor effect on the system behaviour.


1998 ◽  
Vol 545 ◽  
Author(s):  
T. Koga ◽  
X. Sun ◽  
S. B. Cronin ◽  
M. S. Dresselhaus

AbstractA large enhancement in the thermoelectric figure of merit for the whole superlattice, Z3DT, is predicted for short period GaAs/AlAs superlattices relative to bulk GaAs. Various superlattice parameters (superlattice growth direction, superlattice period and layer thicknesses) are explored to optimize Z3DT, including quantum wells formed at various high symmetry points in the Brillouin zone. The highest room temperature Z3DT obtained in the present calculation is 0.41 at the optimum carrier concentration for either (001) or (111) oriented GaAs(20 Å)/AIAs(20 Å) superlattices, which is about 50 times greater than the corresponding ZT for bulk GaAs obtained using the same basic model.


1999 ◽  
Vol 14 (4) ◽  
pp. 253-257 ◽  
Author(s):  
C. N. W. Darlington

The powder diffraction pattern of the perovskite AgNbO3 has been measured using CuKα1 radiation with an incident beam focusing monochromator to eliminate the Kα2 component. Indexing the pattern shows that the multipartite cell is 2×2×4 times that of the pseudocubic subcell. Comparison is made with the diffraction pattern of NaNbO3, which has a similar multipartite unit cell. There are strong similarities, but close inspection shows that the structures are not isomorphous. The paper concludes with a discussion of the figure of merit FN for pseudosymmetric structures. It is suggested that two figures of merit be reported. The first should be the standard one using either all measured reflections or just the first 30. The proposed second figure of merit does not include any superlattice reflections. These superlattice reflections tend to be very weak, resulting in a low completeness factor and relatively large error in the measurement of their position. This effect produces an unrealistically low value of the standard figure of merit. By including only “main” reflections, i.e., those reflections that are common to both the low-symmetry and high-symmetry parent phase (if it exists), a much better estimate of the quality of the fitting of the measured diffraction pattern is obtained.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Damena D. Agonafer ◽  
J. Yeom ◽  
M. A. Shannon

Microposts are utilized to enhance heat transfer, adsorption/desorption, and surface chemical reactions. In a previous study [Yeom et al., J. Micromech. Microeng., 19, p. 065025 (2009)], based in part on an experimental study, an analytical expression was developed to predict the pressure drop across a microchannel filled with arrays of posts with the goal of fabricating more efficient micro-total analysis systems (µTAS) devices for a given pumping power. In particular, a key figure of merit for the design of micropost-filled reactors, based on the flow resistance models was reported thus providing engineers with a design rule to develop efficient µTAS devices. The study did not include the effects of the walls bounding the microposts. In this paper, a three-dimensional computational fluid dynamics model is used to include the effects of three-dimensionality brought about by the walls of the µTAS devices that bound the microposted structures. In addition, posts of smaller size that could not be fabricated for the experiments were also included. It is found that the two- and three-dimensional effects depend on values of the aspect ratio and the blockage ratios. The Reynolds number considered in the experiment that ranged from 1 to 10 was extended to 300 to help determine the range of Re for which the FOM model is applicable.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1156
Author(s):  
Wenjie Qi ◽  
Bowen Liu ◽  
Tian Liang ◽  
Jian Chen ◽  
Deyong Chen ◽  
...  

This paper presents a micro-electromechanical systems (MEMS)-based integrated triaxial electrochemical seismometer, which can detect three-dimensional vibration. By integrating three axes, the integrated triaxial electrochemical seismometer is characterized by small volume and high symmetry. The numerical simulation results inferred that the integrated triaxial electrochemical seismometer had excellent independence among three axes. Based on the experimental results, the integrated triaxial electrochemical seismometer had the advantage of small axial crosstalk and could detect vibration in arbitrary directions. Furthermore, compared with the uniaxial electrochemical seismometer, the integrated triaxial electrochemical seismometer had similar sensitivity curves ranging from 0.01 to 100 Hz. In terms of random ground motion response, high consistencies between the developed integrated triaxial electrochemical seismometer and the uniaxial electrochemical seismometer could be easily observed, which indicated that the developed integrated triaxial electrochemical seismometer produced comparable noise levels to those of the uniaxial electrochemical seismometer. These results validated the performance of the integrated triaxial electrochemical seismometer, which has a good prospect in the field of deep geophysical exploration and submarine seismic monitoring.


1994 ◽  
Vol 357 ◽  
Author(s):  
R. S. Hay

AbstractInterphase boundaries and orientation relationships for yttria - yttrium-aluminum monoclinic and yttrium-aluminum monoclinic - yttrium-aluminum perovskite eutectics were observed by standard and high resolution TEM techniques. Three and five orientation relationships were found for each system, respectively. These eutectics all had a monoclinic phase and therefore had little potential for high symmetry overlap. In many cases low index planes with similer spacings or spacing multiples were parallel. However, presence of a monoclinic phase made definition of a three-dimensional low index near-CSL very difficult, so a combination of planes corresponding to reciprocal-space directions and zones corresponding to real-space directions were often needed for a geometric description of the orientation relationship. In general, two planes and the real-space direction corresponding to the zone for these planes described the orientation relationships. The disregistry between reciprocal-space coincidence sites was not localized by dislocations large enough to be visible.


Author(s):  
M. R. Sabaapour ◽  
M. R. Hairi Yazdi ◽  
B. Beigzadeh

The ability to move along curved paths is an essential feature for biped walkers to move around obstacles. This study is aimed at extending passive walking concept for curved walking and turning to generate more natural and effective motion. Hence three-dimensional (3D) motion of a rimless spoked-wheel, as the simplest walking model, about a general vertical fixed coordinate system has been derived. Then, two kinds of a stable passive turning, i.e. limited and circular continuous have been considered and discussed. The first kind is actually transferring from a 2D periodic motion to another, and can be implemented on a straight slope surface. While, it was shown that the second kind is just related to novel 3D periodic motions and can be recognized on a special surface profile namely “helical slope” introduced here. The latter are interpreted as 3D fixed points of a Poincare return map again. So, their stability was evaluated numerically by a Jacobian analysis and demonstrated through several simulations. Results show asymptotical stability of such motions and their considerable basin of attraction with respect to initial states. In addition, the characteristic of passive turning is shown to be strictly connected with the value of the initial perturbed condition, for instance, to the initial inclination of the wheel. It is then surprising to note that the stability of a 3D passive periodic motion (turning) is higher than 2D one (straight walking) which is actually a special case just with an infinite radius of turn.


Sign in / Sign up

Export Citation Format

Share Document