A MULTI-FIELD COUPLED SEEPAGE MODEL FOR COAL SEAM WITH FRACTURES OF POWER LAW LENGTH DISTRIBUTIONS

Fractals ◽  
2021 ◽  
pp. 2150140
Author(s):  
GUANNAN LIU ◽  
YUHAO HU ◽  
BOMING YU ◽  
FENG GAO ◽  
FENGTIAN YUE ◽  
...  

In the process of gas mining, the fracture distribution with power law length and the pore structure with adsorption effect have an important influence on the coal seam permeability. In recent years, the research on the internal structure of coal seam and the fluid flow mechanism has attracted a large number of researchers. In this paper, by considering the coal matrix deformation caused by adsorption, a pore-fracture model coupled with the multi-field effects and with power law length distribution of fractures in coal seam is established based on the fractal theory for porous media. In this work, we study the influences of the power law exponent [Formula: see text] of fracture length and the ratio [Formula: see text] of the minimum to maximum fracture lengths on the permeability of coal seam and the evolution mechanism of permeability with the structural and mechanical parameters of coal seam. It is found that the permeability of coal seam is inversely proportional to [Formula: see text], directly proportional to [Formula: see text], and to Langmuir volume constant and Langmuir volume strain constant. Compared with other factors, the power law component [Formula: see text] of fractures has the most significant effect on the coal seam permeability.

Fractals ◽  
2020 ◽  
Vol 28 (04) ◽  
pp. 2050072 ◽  
Author(s):  
GUANNAN LIU ◽  
BOMING YU ◽  
DAYU YE ◽  
FENG GAO ◽  
JISHAN LIU

In the process of gas extraction, fracture-pore structure significantly influences the macroscopic permeability of coal seam. However, under the multi-field coupling, the mechanism of coal seam fracture-pore evolution remains to be clarified. In this paper, considering the effect of adsorption expansion, the fractal theory for porous media coupled with the multi-field model for coal seam is considered, and a multi-field coupling mechanical model is constructed by considering the influence of fracture-pore structure. Furthermore, the evolution mechanism of fractal dimension with physical and mechanical parameters of coal seam is studied. It is found that the fractal dimension for coal seam is inversely proportional to mining time and in situ stress, proportional to elastic modulus, Langmuir volume constant and Langmuir volume strain constant, and inversely proportional to Langmuir pressure constant. Compared with other factors, Langmuir pressure constant and Langmuir volume strain constant have the significance influence on the fractal dimension for the fracture length.


Fractals ◽  
2019 ◽  
Vol 27 (04) ◽  
pp. 1950057 ◽  
Author(s):  
TONGJUN MIAO ◽  
SUJUN CHENG ◽  
AIMIN CHEN ◽  
YAN XU ◽  
GUANG YANG ◽  
...  

Fractures with power law length distributions abound in nature such as carbonate oil and gas reservoirs, sandstone, hot dry rocks, etc. The fluid transport properties and morphology characterization of fracture networks have fascinated numerous researchers to investigate for several decades. In this work, the analytical models for fracture density and permeability are extended from fractal fracture network to general fracture network with power law length distributions. It is found that the fracture density is related to the power law exponents [Formula: see text] and the area porosity [Formula: see text] of fracture network. Then, a permeability model for the fracture length distribution with general power law exponent [Formula: see text] and the power law exponent [Formula: see text] for fracture length versus aperture is proposed based on the well-known cubic law in individual fracture. The analytical expression for permeability of fractured networks is found to be a function of power law exponents [Formula: see text], area porosity [Formula: see text] of fracture network, and the micro-structural parameters (maximum fracture length [Formula: see text], fracture azimuth [Formula: see text] and fracture dip angle [Formula: see text]). The present model may shed light on the mechanism of seepage in fracture networks with power law length distributions.


Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2050133 ◽  
Author(s):  
GUANNAN LIU ◽  
BOMING YU ◽  
FENG GAO ◽  
DAYU YE ◽  
FENGTIAN YUE

In study of gas migration process in coal seam, the permeability evolution rule with time has been one of hot topics in the area of coal seam for decades. At present, in view of the time-varying rule of coal seam permeability, the influence of microstructure parameters and adsorption effect are seldom considered simultaneously. In this paper, the fractal seepage model coupled with coal deformation, and the adsorption expansion effect of coal is proposed. A multi-field coupling model is established by considering the influence of matrix and fracture structure. The influence of structural parameters and adsorption constant of main fracture on the time-varying curve of macro permeability are analyzed, including: (1) fractal dimension for fracture lengths; (2) maximum fracture length; (3) Langmuir adsorption strain constant; (4) Langmuir adsorption pressure constant. The results show that, under the influence of in situ stress and adsorption effect, the permeability of coal seam decreases with time. The present results show that the permeability is proportional to the fractal dimension for fracture lengths and the maximum fracture length. The uniformity of permeability distribution is found to be directly proportional to the pressure constant of Langmuir and inversely proportional to the volume constant of Langmuir.


2018 ◽  
Vol 32 (7) ◽  
pp. 866-872 ◽  
Author(s):  
Swagat Patnaik ◽  
Basudev Biswal ◽  
Dasika Nagesh Kumar ◽  
Bellie Sivakumar

2005 ◽  
Vol 73 (3) ◽  
pp. 461-468 ◽  
Author(s):  
Timothy T. Clark ◽  
Ye Zhou

The Richtmyer-Meshkov mixing layer is initiated by the passing of a shock over an interface between fluid of differing densities. The energy deposited during the shock passage undergoes a relaxation process during which the fluctuational energy in the flow field decays and the spatial gradients of the flow field decrease in time. This late stage of Richtmyer-Meshkov mixing layers is studied from the viewpoint of self-similarity. Analogies with weakly anisotropic turbulence suggest that both the bubble-side and spike-side widths of the mixing layer should evolve as power-laws in time, with the same power-law exponent and virtual time origin for both sides. The analogy also bounds the power-law exponent between 2∕7 and 1∕2. It is then shown that the assumption of identical power-law exponents for bubbles and spikes yields fits that are in good agreement with experiment at modest density ratios.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
J. Prakash ◽  
S. Gouse Mohiddin ◽  
S. Vijaya Kumar Varma

A numerical study of buoyancy-driven unsteady natural convection boundary layer flow past a vertical cone embedded in a non-Darcian isotropic porous regime with transverse magnetic field applied normal to the surface is considered. The heat and mass flux at the surface of the cone is modeled as a power law according to qwx=xm and qw*(x)=xm, respectively, where x denotes the coordinate along the slant face of the cone. Both Darcian drag and Forchheimer quadratic porous impedance are incorporated into the two-dimensional viscous flow model. The transient boundary layer equations are then nondimensionalized and solved by the Crank-Nicolson implicit difference method. The velocity, temperature, and concentration fields have been studied for the effect of Grashof number, Darcy number, Forchheimer number, Prandtl number, surface heat flux power-law exponent (m), surface mass flux power-law exponent (n), Schmidt number, buoyancy ratio parameter, and semivertical angle of the cone. Present results for selected variables for the purely fluid regime are compared with the published results and are found to be in excellent agreement. The local skin friction, Nusselt number, and Sherwood number are also analyzed graphically. The study finds important applications in geophysical heat transfer, industrial manufacturing processes, and hybrid solar energy systems.


1998 ◽  
Vol 5 (2) ◽  
pp. 93-104 ◽  
Author(s):  
D. Harris ◽  
M. Menabde ◽  
A. Seed ◽  
G. Austin

Abstract. The theory of scale similarity and breakdown coefficients is applied here to intermittent rainfall data consisting of time series and spatial rain fields. The probability distributions (pdf) of the logarithm of the breakdown coefficients are the principal descriptor used. Rain fields are distinguished as being either multiscaling or multiaffine depending on whether the pdfs of breakdown coefficients are scale similar or scale dependent, respectively. Parameter  estimation techniques are developed which are applicable to both multiscaling and multiaffine fields. The scale parameter (width), σ, of the pdfs of the log-breakdown coefficients is a measure of the intermittency of a field. For multiaffine fields, this scale parameter is found to increase with scale in a power-law fashion consistent with a bounded-cascade picture of rainfall modelling. The resulting power-law exponent, H, is indicative of the smoothness of the field. Some details of breakdown coefficient analysis are addressed and a theoretical link between this analysis and moment scaling analysis is also presented. Breakdown coefficient properties of cascades are also investigated in the context of parameter estimation for modelling purposes.


Author(s):  
Jack Merrin

1AbstractAn automated statistical and error analysis of 45 countries or regions with more than 1000 cases of COVID-19 as of March 28, 2020, has been performed. This study reveals differences in the rate of disease spreading rate over time in different countries. This survey observes that most countries undergo a beginning exponential growth phase, which transitions into a power-law phase, as recently suggested by Ziff and Ziff. Tracking indicators of growth, such as the power-law exponent, are a good indication of the relative danger different countries are in and show when social measures are effective towards slowing the spread. The data compiled here are usefully synthesizing a global picture, identifying country to country variation in spreading, and identifying countries most at risk. This analysis may factor into how best to track the effectiveness of social distancing policies and quarantines in real-time as data is updated each day.


Sign in / Sign up

Export Citation Format

Share Document