ANALYSIS OF PERMEABILITY EVOLUTION CHARACTERISTICS BASED ON DUAL FRACTAL COUPLING MODEL FOR COAL SEAM

Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2050133 ◽  
Author(s):  
GUANNAN LIU ◽  
BOMING YU ◽  
FENG GAO ◽  
DAYU YE ◽  
FENGTIAN YUE

In study of gas migration process in coal seam, the permeability evolution rule with time has been one of hot topics in the area of coal seam for decades. At present, in view of the time-varying rule of coal seam permeability, the influence of microstructure parameters and adsorption effect are seldom considered simultaneously. In this paper, the fractal seepage model coupled with coal deformation, and the adsorption expansion effect of coal is proposed. A multi-field coupling model is established by considering the influence of matrix and fracture structure. The influence of structural parameters and adsorption constant of main fracture on the time-varying curve of macro permeability are analyzed, including: (1) fractal dimension for fracture lengths; (2) maximum fracture length; (3) Langmuir adsorption strain constant; (4) Langmuir adsorption pressure constant. The results show that, under the influence of in situ stress and adsorption effect, the permeability of coal seam decreases with time. The present results show that the permeability is proportional to the fractal dimension for fracture lengths and the maximum fracture length. The uniformity of permeability distribution is found to be directly proportional to the pressure constant of Langmuir and inversely proportional to the volume constant of Langmuir.

Fractals ◽  
2021 ◽  
Vol 29 (02) ◽  
pp. 2150065
Author(s):  
LIU GUANNAN ◽  
YE DAYU ◽  
YU BOMING ◽  
GAO FENG ◽  
CHEN PEIJIAN

Coal seam contains a large number of fractures, whose shape and structure of fissures are complicated, and they are the main channels for gas migration. Therefore, the quantitative analysis of the internal relationship between the microstructure and the macroscopic permeability is the key issue to increase the drainage volume. Some investigators discussed the permeability of coal seams based on the fractal theory, but the mechanisms of gas migration under the influence of fissure microstructures and coal deformation are still unclear. Moreover, most of the multi-process coupling analysis in the stage of Coal Bed Methane (CBM) mining was not taken into account. In this paper, the effects of fissure structures on the coal gas drainage rate in multi-field coupling are studied. Aiming at the mechanisms of gas drainage under the joint action of fracture structure, in-situ stress and adsorption deformation, we propose a two-scale multi-field coupling model, which takes into account the influences of micro fracture and pore structure. On this basis, we obtained the pressure evolution rule of coal seam pore system and fissure system and the distribution rule of coal seam displacement with drilling positions. Meanwhile, the effects of coal seam maximum fracture length, maximum pore diameter, the fractal dimension for fractures and fractal dimension for pores on coal seam extraction are discussed.


Fractals ◽  
2020 ◽  
Vol 28 (04) ◽  
pp. 2050072 ◽  
Author(s):  
GUANNAN LIU ◽  
BOMING YU ◽  
DAYU YE ◽  
FENG GAO ◽  
JISHAN LIU

In the process of gas extraction, fracture-pore structure significantly influences the macroscopic permeability of coal seam. However, under the multi-field coupling, the mechanism of coal seam fracture-pore evolution remains to be clarified. In this paper, considering the effect of adsorption expansion, the fractal theory for porous media coupled with the multi-field model for coal seam is considered, and a multi-field coupling mechanical model is constructed by considering the influence of fracture-pore structure. Furthermore, the evolution mechanism of fractal dimension with physical and mechanical parameters of coal seam is studied. It is found that the fractal dimension for coal seam is inversely proportional to mining time and in situ stress, proportional to elastic modulus, Langmuir volume constant and Langmuir volume strain constant, and inversely proportional to Langmuir pressure constant. Compared with other factors, Langmuir pressure constant and Langmuir volume strain constant have the significance influence on the fractal dimension for the fracture length.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Guannan Liu ◽  
Dayu Ye ◽  
Feng Gao ◽  
Jishan Liu

In the process of coalbed methane exploitation, the fracture and pore structure is the key problem that affects the permeability of coalbed. At present, the coupling effect of fracture and pore structure and in situ stress is seldom considered in the study of coal seam permeability. In this paper, the fractal seepage model is coupled with coal deformation, and the adsorption expansion effect is considered. A multifield coupling model considering the influence of matrix and fracture structure is established. Then, the influence of pore structure parameters of main fracture on macropermeability is analyzed, including (1) fractal dimension of fracture length, (2) maximum fracture length, (3) fractal dimension of throat diameter, and (4) fractal dimension of throat bending. At the same time, the simulation results are compared with the results of Darcy’s uniform permeability model. The results show that the permeability calculated by the proposed model is significantly different from that calculated by the traditional cubic model. Under the action of in situ stress, when the porosity and other parameters remain unchanged, the macropermeability of coal is in direct proportion to the fractal dimension of coal fracture length, the fractal dimension of throat diameter, and the maximum fracture length and in inverse proportion to the fractal dimension of coal throat curvature.


2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1355-1361 ◽  
Author(s):  
Yi Xue ◽  
Zhengzheng Cao ◽  
Faning Dang ◽  
Zongyuan Ma ◽  
Jun Gao

Microwave heating is an effective method to improve the recovery rate of coalbed CH4. In this study, a fully coupled electromagnetic thermodynamic model was developed to study the effects of coal compaction, thermal expansion and thermal gas desorption on coal deformation. The simulation results show that although in the initial stage, the decrease of gas pressure by microwave is not obvious, the distribution of gas pressure in coal seam is obviously affected by microwave after a period of time. The microwave can also affect the mineral composition of rocks, cause rock damage, promote the development of cracks, and promote the increase of permeability


Fractals ◽  
2021 ◽  
pp. 2150140
Author(s):  
GUANNAN LIU ◽  
YUHAO HU ◽  
BOMING YU ◽  
FENG GAO ◽  
FENGTIAN YUE ◽  
...  

In the process of gas mining, the fracture distribution with power law length and the pore structure with adsorption effect have an important influence on the coal seam permeability. In recent years, the research on the internal structure of coal seam and the fluid flow mechanism has attracted a large number of researchers. In this paper, by considering the coal matrix deformation caused by adsorption, a pore-fracture model coupled with the multi-field effects and with power law length distribution of fractures in coal seam is established based on the fractal theory for porous media. In this work, we study the influences of the power law exponent [Formula: see text] of fracture length and the ratio [Formula: see text] of the minimum to maximum fracture lengths on the permeability of coal seam and the evolution mechanism of permeability with the structural and mechanical parameters of coal seam. It is found that the permeability of coal seam is inversely proportional to [Formula: see text], directly proportional to [Formula: see text], and to Langmuir volume constant and Langmuir volume strain constant. Compared with other factors, the power law component [Formula: see text] of fractures has the most significant effect on the coal seam permeability.


Author(s):  
V.Yu. Fokina ◽  
E.А. Kizima ◽  
I.V. Miheev ◽  
A.I. Ivankov ◽  
V.M. Garamus

Two types of fullerene C60 water dispersions were investigated by a small-angle X-ray and neutron scattering. As a result, structural parameters of fullerene aggregates were obtained. The water dispersions were obtained by the solvent-exchange technique and by huge dilution of initial C60/Nmethylpyrrolidone solution. The structure organization of water dispersions is considered in respect to their technique preparation. It was shown that fullerene aggregates were characterized by highly polydispersity in size for all dispersions. In the case of son/nC60 dispersion it was found that fullerenes formed aggregates with a dense nucleus (namely a surface fractal) with a radius of 58 ± 1 nm and a fractal dimension of 2.3. In turn, the nmp/nC60 system was characterized by the branched aggregates with fractal dimension 1.5 and bimodal particle size distribution.


Author(s):  
Xiangyu You ◽  
Ping Guo

A novel and simple near-field electrospinning (NFES) method has been developed to fabricate wavy or helical nanofibrous arrays. By alternating the electrostatic signals applied on auxiliary-electrodes (AE), the structural parameters of deposited patterns can be actively controlled. Compared with the traditional electrospinning methods based on the bending and buckling effects or collector movement, the proposed method shows advantages in the controllability, accuracy, and minimal feature size. Forces operating on the electrospinning jet and the time-varying electric field distribution were analyzed to explain the kinematics of the jet. Nanoscale wavy and helical patterns with various structural parameters were fabricated. The effects of experimental process parameters on structural parameters of deposited patterns were analyzed to demonstrate the controllability of our method in fabricating wavy or helical nanofibrous structures. It is envisioned that this method will benefit the applications in the field of photovoltaic devices, sensors, transducers, resonators, and stretchable electronics.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879559 ◽  
Author(s):  
Min Xiang ◽  
Feng Xiong ◽  
Yuanfeng Shi ◽  
Kaoshan Dai ◽  
Zhibin Ding

Engineering structures usually exhibit time-varying behavior when subjected to strong excitation or due to material deterioration. This behavior is one of the key properties affecting the structural performance. Hence, reasonable description and timely tracking of time-varying characteristics of engineering structures are necessary for their safety assessment and life-cycle management. Due to its powerful ability of approximating functions in the time–frequency domain, wavelet multi-resolution approximation has been widely applied in the field of parameter estimation. Considering that the damage levels of beams and columns are usually different, identification of time-varying structural parameters of frame structure under seismic excitation using wavelet multi-resolution approximation is studied in this article. A time-varying dynamical model including both the translational and rotational degrees of freedom is established so as to estimate the stiffness coefficients of beams and columns separately. By decomposing each time-varying structural parameter using one wavelet multi-resolution approximation, the time-varying parametric identification problem is transformed into a time-invariant non-parametric one. In solving the high number of regressors in the non-parametric regression program, the modified orthogonal forward regression algorithm is proposed for significant term selection and parameter estimation. This work is demonstrated through numerical examples which consider both gradual variation and abrupt changes in the structural parameters.


2021 ◽  
pp. 004051752110418
Author(s):  
Wenqian Feng ◽  
Yanli Hu ◽  
Xin rong Li ◽  
Lidong Liu

To improve the effectiveness of industrial robots in the textile and garment industry, it is necessary to expand the application range of electrostatic adsorption end effectors and solve the problem of automatically grasping and transferring fabrics during garment processing. Taking weft-knit fabric as an example, this paper begins by analyzing the factors that influence the electrostatic adsorption capacity, and then constructing an electrostatic adsorption capacity model based on the fabric characteristics. Next, the shape arrangement and structural parameters of the electrode plate are optimized by taking the electrostatic adsorption force model and maximizing the adsorption force per unit area. Finally, the adsorption effect of the electrostatic adsorption end effector is verified by simulation and experiment. The verification results show that the electrode with a comb-shaped arrangement and optimized structural parameters can adsorb clothing fabric well and meets the requirements of clothing automated production lines. This study provides a new method for solving the problem of automatically grasping and transferring fabrics and provides technical support for improving automation in the garment industry.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Guang-zhe Deng ◽  
Rui Zheng

With the raw coal from a typical low-permeability coal seam in the coalfield of South Junger Basin in Xinjiang as the research object, this paper examined six kinds of coal samples with different permeabilities using a scanning electron microscope and a low-temperature nitrogen adsorption test that employed a JSM-6460LV high-resolution scanning electron microscope and an ASAP2020 automatic specific surface area micropore analyzer to measure all characteristic micropore structural parameters. According to fractal geometry theory, four fractal dimension calculation models of coal and rock were established, after which the pore structure characteristic parameters were used to calculate the fractal dimensions of the different coal seams. The results show that (1) the low-permeability coal seam in the coalfield of South Junger Basin in Xinjiang belongs to mesoporous medium, with a certain number of large pores and no micropores. The varying adsorption capacities of the different coal seams were positively correlated with pore volume, surface area, and the mesoporous surface area proportions, from which it was concluded that mesopores were the main contributors to pore adsorption in low-permeability coal seams. (2) The raw coal pore fractal dimension had a negative linear relationship to average pore size, a positive linear relationship with total pore volume, total surface area, and adsorption capacity, and a positive correlation with the mesoporous surface area proportion; that is, the higher the fractal dimension, the larger the pore volume and surface area of the raw coal. (3) The permeability of the low-permeability coal seam had a phase correlation with the micropore development degree; that is, the permeability had a phase negative correlation with the pore distribution fractal dimension, and there was a positive correlation between permeability and porosity. These results are of theoretical significance for the clean exploitation of low-permeability coal seam resources.


Sign in / Sign up

Export Citation Format

Share Document