INVESTIGATION OF STRUCTURAL, OPTICAL, AND DIELECTRIC PROPERTIES OF PVA-KI FOR TEMPERATURE SENSOR APPLICATIONS

2019 ◽  
Vol 26 (09) ◽  
pp. 1950054
Author(s):  
T. A. HANAFY ◽  
I. T. ZEDAN ◽  
A. E. BEKHEET

Polyvinyl alcohol (PVA) films doped with potassium iodide (KI) have been prepared by casting from their aqueous solutions. The structure of the doped samples was investigated using Fourier transform infrared spectroscopy. The addition of KI to PVA structure leads to form crosslinking as well as the increase of the amorphous ratio within the investigated sample. The optical measurements were recorded at room temperature in the range of 200–2500[Formula: see text]nm. It was found that the optical energy gap of the investigated sample increases with increasing KI ratio. The effect of the addition increment of KI on the optical parameters of PVA has been investigated. Dielectric spectra of PVA doped with KI were studied in the temperature and the frequency ranges of 303–373[Formula: see text]K and 100[Formula: see text]Hz–5[Formula: see text]MHz, respectively. The behavior of dielectric constant ([Formula: see text]) and dielectric loss index ([Formula: see text]) of PVA sample doped with KI exhibits good linearity with temperature. The obtained results suggest strongly the applicability of these materials in the temperature sensor applications.

2019 ◽  
Vol 14 (29) ◽  
pp. 1-7
Author(s):  
Farah Q. Kamil

PbxCd1-xSe compound with different Pb percentage (i.e. X=0,0.025, 0.050, 0.075, and 0.1) were prepared successfully. Thin filmswere deposited by thermal evaporation on glass substrates at filmthickness (126) nm. The optical measurements indicated thatPbxCd1-xSe films have direct optical energy gap. The value of theenergy gap decreases with the increase of Pb content from 1.78 eV to1.49 eV.


2012 ◽  
Vol 27 (02) ◽  
pp. 1350015
Author(s):  
AHMED M. EL-NAGGAR

The influence of the deposition rate of chemically annealed vacuum-deposited a-Si : H films on its optical and electrical properties was studied. The optical parameters were studied using spectrophotometric measurements of the film transmittance in the wavelength range 200–3000 nm. It was found that with increasing the silicon deposition rate from 0.09 to 0.23 nm/s, the refractive index, n, decreases from 3.78 to 3.45 at 1.5 μm, and the optical energy gap, Eg, decreases from 1.74 to 1.66 eV, while the Urbach parameter, ΔE, increases from 77 to 99 meV. The dark conductivity was measured at temperatures descending from 480 to 170 K. It was found that the room temperature dark conductivity values decreased from 1.11 × 10-6 (Ω⋅ cm )-1 to 2.08 × 10-10 (Ω⋅ cm )-1 with increasing the deposition rate from 0.09 to 0.23 nm/s respectively, while the activation energy Ea increased from 0.53 to 0.84 eV with increasing deposition rate. As a result, a good quality a-Si : H film with optical energy gap of 1.74 eV, Urbach parameter of 77 meV, dark conductivity of 1.11 × 10-6 (Ω⋅ cm )-1, and activation energy of 0.53 eV was successfully prepared at a low deposition rate of 0.09 nm/s.


2015 ◽  
Vol 9 (1) ◽  
pp. 162-172 ◽  
Author(s):  
A. Abu El-Fadl ◽  
A.M. Nashaat

Single crystals of tetramethylammonium tetrachlorozincate [N(CH3)4]ZnCl4 abbreviated hereafter as (TMA)2ZnCl4 were grown using the slow evaporation technique at 315 K. The X-ray powder diffraction patterns indicated that [N(CH)]ZnCl belongs to the orthorhombic system with Pmcn symmetry at room temperature. The lattice constants are found to be a= 12.360 Å, b= 15.687 Å and c= 8.985 Å. The values were in good agreement with the values in previous studies. Ultraviolet–visible–near-infrared (UV–Vis–NIR) spectral studies were carried out in the temperature range 276–307 K. This range of temperature involves two phase transition temperatures (Ti=296 K) from normal (parent) to incommensurate phase and (T=279 K) from incommensurate to commensurate-ferroelectric phase. The cut off wavelength was found to be 195.016 nm at room temperature. The optical transmittance increases with increasing temperature, and the cut off shifts to higher wavelengths. Analysis reveals that the type of optical transition is the indirect allowed one. The optical energy gap (Eg) has the value of 5.903 eV at room temperature. The value of optical energy gap (Eg) decreases with increasing temperature. The changes in the values of the cut off wavelength and optical energy gap (Eg) with changing the temperature were found to take different rates at the two phases under study, besides anomalous takes place at Ti and Tc. The absorption coefficient (α) as a function of the incident photon energy shows an exponential behavior near the absorption edge which suggests that the Urbach rule is obeyed and indicated the formation of a band tail. Urbach parameters were calculated at different temperatures and the frequencies of effective phonons and electron–phonon interaction constants were determined for various phases.


The concept of ionicity has been developed by Phillips and Van Vechten from the dielectric analysis of the semiconductors and insulators to evaluate various bond parameters of binary tetrahedral (AIIBVI and AIIIBV) semiconductors. In this paper, an advance hypothesis of average atomic number of the elements in a compound has been used to evaluate intrinsic electronic and optical parameters such as ionic gap (Ec), average energy gap (Eg), crystal ionicity (fi) and dielectric constant (ϵ) of binary tetrahedral semiconductors.


Author(s):  
Muneer H. Jadduaa ◽  
Zainab Ali Harbi ◽  
Nadir F. Habubi

Thin films of CdO were prepared by chemical spray pyrolysis (CSP) . The effect of different temperature substrate (300,350,400,450 and 500) °C on some optical parameters has been studied . The transmittance and the optical energy gap were increased from (2.503-2.589) eV ,on the contrary of the rest parameters such as refractive index , real and imaginary parts of dielectric constant and Urbach energy which they were decreased as the substrate temperature increase.


2020 ◽  
pp. 44-52
Author(s):  
Ahmed Ahmed S. Abed ◽  
Sattar J. Kasim ◽  
Abbas F. Abbas

In the present study, the microwave heating method was used to prepare cadmium sulfide quantum dots CdSQDs films. CdS nanoparticles size average obtained as (7nm). The morphology, structure and composition of prepared CdSQDs were examined using (FE-SEM), (XRD) and (EDX). Optical properties of CdSQDs thin films formed and deposited onto glass substrates have been studied at room temperature using UV/ Visible spectrophotometer within the wavelength of (300-800nm), and Photoluminescence (PL) spectrum. The optical energy gap (Eg) which estimated using Tauc relation was equal (2.6eV). Prepared CdS nanoparticles thin films are free from cracks, pinholes and have high adhesion to substrate.


1992 ◽  
Vol 281 ◽  
Author(s):  
D. J. Arent ◽  
K. A. Bertness ◽  
Sarah R. Kurtz ◽  
M. Bode ◽  
J. M. Olson

ABSTRACTA reduction in the optical energy gap of more than 65 meV has been observed in In0.53Ga0.47 As grown on (100) InP by atmospheric pressure metalorganic vapor phase epitaxy. The band gap energies were deduced from room temperature photocurrent spectroscopic measurements, accounting for differences in composition and strain. Spontaneous CuPt type ordering of In and Ga atoms on the (111) subplanes of the InGaAs2 was confirmed by transmission electron microscopy. Superlattice signatures in the transmission micrographs were observed only for samples with associated reduced band gap energies, and were confirmed by visible double periodicity in high resolution images. In0.53Ga0.47 As was grown under a variety of conditions, some which promoted ordering. In general, lower growth temperatures and moderate (∼4 μ/hr) growth rates promoted a greater degree of ordering and reduction of the band gap energy. The influence of growth conditions on the ordered structure is considered within the context of current theories.


2019 ◽  
Vol 37 (1) ◽  
pp. 65-70
Author(s):  
M.M. El-Nahass ◽  
H.A.M. Ali

AbstractOptical properties of Si single crystals with different orientations (1 0 0) and (1 1 1) were investigated using spectrophotometric measurements in a spectral range of 200 nm to 2500 nm. The data of optical absorption revealed an indirect allowed transition with energy gap of 1.1 ± 0.025 eV. An anomalous dispersion in refractive index. The normal dispersion of the refractive index was discussed according to Wemple-DiDomenico single oscillator model. The oscillator energy Eo, dispersion energy Ed, high frequency dielectric constant ∈∞, lattice dielectric constant ∈L and electronic polarizability αe were estimated. The real ∈1 and imaginary ∈2 parts of dielectric constant were also determined.


1968 ◽  
Vol 46 (2) ◽  
pp. 157-159 ◽  
Author(s):  
John C. Woolley ◽  
Mathew B. Thomas ◽  
Alan G. Thompson

Room-temperature optical energy-gap values have been determined for GaxIn1−x As alloys, and have been corrected, where necessary, for the Burstein effect by finding Fermi energy values from thermoelectric power data. The results show good agreement with the empirical equations given previously for mixed III–V alloys.


Sign in / Sign up

Export Citation Format

Share Document