Optical Detection of Band Gap Variations Due to Ordering in Ga0.47In0.53As on InP

1992 ◽  
Vol 281 ◽  
Author(s):  
D. J. Arent ◽  
K. A. Bertness ◽  
Sarah R. Kurtz ◽  
M. Bode ◽  
J. M. Olson

ABSTRACTA reduction in the optical energy gap of more than 65 meV has been observed in In0.53Ga0.47 As grown on (100) InP by atmospheric pressure metalorganic vapor phase epitaxy. The band gap energies were deduced from room temperature photocurrent spectroscopic measurements, accounting for differences in composition and strain. Spontaneous CuPt type ordering of In and Ga atoms on the (111) subplanes of the InGaAs2 was confirmed by transmission electron microscopy. Superlattice signatures in the transmission micrographs were observed only for samples with associated reduced band gap energies, and were confirmed by visible double periodicity in high resolution images. In0.53Ga0.47 As was grown under a variety of conditions, some which promoted ordering. In general, lower growth temperatures and moderate (∼4 μ/hr) growth rates promoted a greater degree of ordering and reduction of the band gap energy. The influence of growth conditions on the ordered structure is considered within the context of current theories.

2000 ◽  
Vol 618 ◽  
Author(s):  
J. Bettini ◽  
M.M.G. de Carvalho ◽  
M. A. Hayashi ◽  
L. P. Cardoso ◽  
D. Ugarte

ABSTRACTIn this work, In0.5Ga0.5P layers were grown by Chemical Beam Epitaxy on GaAs (001) substrates. A set of samples was grown with temperatures kept in the range of 500°C to 560°C with V/III ratio 15. Another set was grown at 560°C with V/II ratio varied in the range 15 to 35. The evolution of ordering as function of growth temperature and V/III ratio was evaluated by photoluminescence measurements at 77K, Transmission Electron Diffraction (TED) and images using Transmission Electron Microscopy (TEM)-Dark Field. A 48meV reduction in the band gap energy was measured by photoluminescence measurements at 77 K when growth temperature was increased. This result is associated to the occurrence of CuPtB ordering in the InGaP layers observed by TED. The TEM-Dark field examination shows that the ordered domains are larger for samples grown at higher temperaturesA small reduction in band gap, from 1.915eV to 1.902eV, occurs when the V/III ratio is increased from 15 to 35. The TED patterns present diffuse scattering for all samples. For those grown with higher V/III ratio, spots are also observed. TEM-dark field images show that the ordered regions become larger, elongated and inclined; some of them exhibit long range ordering


2020 ◽  
pp. 44-52
Author(s):  
Ahmed Ahmed S. Abed ◽  
Sattar J. Kasim ◽  
Abbas F. Abbas

In the present study, the microwave heating method was used to prepare cadmium sulfide quantum dots CdSQDs films. CdS nanoparticles size average obtained as (7nm). The morphology, structure and composition of prepared CdSQDs were examined using (FE-SEM), (XRD) and (EDX). Optical properties of CdSQDs thin films formed and deposited onto glass substrates have been studied at room temperature using UV/ Visible spectrophotometer within the wavelength of (300-800nm), and Photoluminescence (PL) spectrum. The optical energy gap (Eg) which estimated using Tauc relation was equal (2.6eV). Prepared CdS nanoparticles thin films are free from cracks, pinholes and have high adhesion to substrate.


2014 ◽  
Vol 1699 ◽  
Author(s):  
Steffi Schönau ◽  
Florian Ruske ◽  
Sebastian Neubert ◽  
Bernd Rech

ABSTRACTThin films of pure aluminum doped ZnO and with addition of nitrogen, oxygen and hydrogen have been prepared by magnetron sputtering. The spectral absorption coefficient close to the band gap energy has been determined by spectrophotometry and analyzed regarding band tailing and creation of defect bands. We found, that an improvement of Raman crystallinity under O2- rich growth conditions is not accompanied by a suppression of band tailing as expected. An additional absorption feature evolves for layers grown in N2 containing atmosphere. Doping with hydrogen attenuates sub-band gap absorption.


2020 ◽  
Vol 1002 ◽  
pp. 251-263
Author(s):  
Tahseen A. Alaridhee ◽  
Fatima H. Malk ◽  
Abdullah A. Hussein ◽  
Dawod S. Abid

The dye-doped polymer is commonly used in the field of optoelectronics, given its effectiveness in optimising the device’s performance. This study is devoted to the synthesis and characterisation of Anchusa-Italica-doped Pentacene thin-film. Scanning electronic microscopy structural analysis, Fourier transform spectroscopy, and UV-visible transmittance spectra with a range of 300-900 nm were also carried out. The fundamental optical properties such as the absorption coefficient, optical energy gap, absorption and refractive indices were calculated based on the methods already used in the literature as Tauc’s relationship. The morphology of the samples indicated that dye structure was affected in the doped pentacene. The Fourier transform infrared technique (FT-IR) resulting spectrum of the doped samples also showed a significant absorption peak corresponding to C-H as an index of impurities. The calculated band-gap energy of the impurity sample was reduced and was the lowest compared to both the pure dye and polymer samples. The optical absorption and transmittance spectra revealed that it was positioned in the desirable ranges for optoelectronic applications. An anomaly in the absorption index was also observed through excitation of the resonance mode with transparent indication. This effect was deduced from the calculation of the refractive index. The results presented in this paper significantly contribute to the developments in the field of optoelectronic devices based on dye/polymer organic materials.


1968 ◽  
Vol 46 (2) ◽  
pp. 157-159 ◽  
Author(s):  
John C. Woolley ◽  
Mathew B. Thomas ◽  
Alan G. Thompson

Room-temperature optical energy-gap values have been determined for GaxIn1−x As alloys, and have been corrected, where necessary, for the Burstein effect by finding Fermi energy values from thermoelectric power data. The results show good agreement with the empirical equations given previously for mixed III–V alloys.


1999 ◽  
Vol 607 ◽  
Author(s):  
L.D. Zhu ◽  
P.E. Norris ◽  
L.O. Bouthillette

AbstractThe electronic band gap of single crystalline ZnGeN2 epitaxial layer grown on sapphire substrate by metal organic chemical vapor deposition has been measured by optical transmission and room temperature photoluminescence. The band gap energy is 2.99eV at room temperature, and the band gap is a direct transition type. The interference oscillations of the transmission spectra together with rutile prism coupling measurements have been used to determine the r fractive index and the dispersion characteristics of the single crystal ZnGeN2 below the band gap energy. The rutile prism coupling measurement displays the wave guide modes of the film at 6 2.8nm wavelength of the He-Ne laser, enabling determination of the film thickness and refractive index precisely at the wavelength. The refractive index of ZnGeN2 crystal is 2.35 at 6328Å wavelength. The measured refractive index dispersion curve can be fitted with the first-order Sellmeier equation n2(λ) = A + λ2/(λ2-B), using fitting parameters A=4.3 1, B=0.076.


2017 ◽  
Vol 889 ◽  
pp. 234-238
Author(s):  
Mohd Hasmizam Razali ◽  
Nur Arifah Ismail ◽  
Mahani Yusoff

Pure and F doped TiO2 nanotubes was synthesized using simple hydrothermal method. The hydrothermal was conducted using teflon-liner autoclave and maintained at 150oC for 24 hours. The characterization of synthesised product was carried out using x-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive of x-ray spectroscopy (EDX) and ultra violet – visible light diffuse reflectance spectroscopy (UV-Vis DRS) for band gap measurements. XRD patterns indicated that anatase TiO2 phase was remained after F doping suggested that fluorine was highly dispersed into TiO2 by substituted with O in the TiO2 lattice to formed TiO2-xFx solid solution. Morphology investigation using TEM found out small diameter of nanotubes structure within 8 – 10 nm of pure and F doped TiO2 nanotubes. The band gap energy (Eg) of both nanotubes samples were almost similar proposing that F doping does not modify the band gap energy.


2017 ◽  
Vol 18 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Md. Abdullah Al Humayun ◽  
AHM Zahirul Alam ◽  
Sheroz Khan ◽  
MohamedFareq AbdulMalek ◽  
Mohd Abdur Rashid

High temperature stability of band-gap energy of active layer material of a semiconductor device is one of the major challenges in the field of semiconductor optoelectronic device design. It is essential to ensure the stability in different band-gap energy dependent characteristics of the semiconductor material used to fabricate these devices either directly or indirectly. Different models have been widely used to analyze the band-gap energy dependent characteristics at different temperatures. The most commonly used methods to analyze the temperature dependence of band-gap energy of semiconductor materials are: Passler model, Bose–Einstein model and Varshni’s model. This paper is going to report the limitation of the Bose–Einstein model through a comparative analysis between Bose–Einstein model and Varshni’s model. The numerical analysis is carried out considering GaN as it is one of the most widely used semiconductor materials all over the world. From the numerical results it is ascertained that below the temperature of 95o K both the models show almost same characteristics. However beyond 95o K Varshni’s model shows weaker temperature dependence than that of Bose–Einstein model. Varshni’s model shows that the band-gap energy of GaN at 300o K is found to be 3.43eV, which establishes a good agreement with the theoretically calculated band-gap energy of GaN for operating at room temperature.


2005 ◽  
Vol 886 ◽  
Author(s):  
Takeyuki Sekimoto ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

ABSTRACTTernary compounds LnPdX (Ln = lanthanide elements of La, Gd, Er; X = Sb, Bi) were prepared by a spark plasma sintering (SPS) technique. The crystal structure of LaPdSb and GdPdSb was confirmed to be a hexagonal ZrBeSi-type structure and different from the other compounds with a MgAgAs-type structure. The electrical resistivities ρ of LaPdSb and GdPdSb indicate the metallic or semimetallic characteristics, while those of ErPdSb and LnPdBi indicate semiconductor characteristics. From the ln ρ − 1/T plot, the band gap energies Eg were estimated to be 0.28, 0.053, 0.081, and 0.049 eV for ErPdSb, LaPdBi, GdPdBi, and ErPdBi, respectively. All the samples have positive thermoelectric powers S above room temperature. The largest power factor S2/ρ was obtained as 49.5 μW/K2 cm at 327 K for LaPdSb. From the Hall effect measurements on ErPdX, the carrier concentration n of ErPdSb and ErPdBi were obtained as 5.9×1018 and 3.21×1019 cm−3 at room temperature, respectively. It is considered that the difference of n at room temperature is mainly due to the magnitude of the band gap energy.


Sign in / Sign up

Export Citation Format

Share Document