INFLUENCE OF BEAM ENERGY OF IONS ON PROPERTIES OF NICKEL NANOWIRES

Author(s):  
SHEHLA HONEY ◽  
JAMIL ASIM ◽  
KAVIYARASU KASINATHAN ◽  
MAAZA MALIK ◽  
SHAHZAD NASEEM ◽  
...  

Electrical conductivity and optical transmittance of nickel nanowire (Ni-NW) networks are reported in this work. The Ni-NWs were irradiated with 3.5, 3.8 and 4.11[Formula: see text]MeV proton (H[Formula: see text]) ions at room temperature. The electrical conductivity of Ni-NW networks was observed to increase with the increase in beam energies of H[Formula: see text] ions. With the increase in ions beam energies, electrical conductivity increases and this may be attributed to a reduction in the wire–wire point contact resistance due to the irradiation-induced welding of NWs. Welding is probably initiated due to H[Formula: see text] ion-irradiation induced heating effect that also improved the crystalline quality of the NWs. After ion beam irradiation, localized heat is generated in the NWs due to ionization which was also verified by SRIM simulation. Optical transmittance is increased with increase in the energy of H[Formula: see text] ions. The Ni-NW networks subjected to an ion beam irradiation to observe corresponding changes in electrical conductivity and optical transparencies are promising for various nanotechnological applications, such as highly transparent and conducting electrodes.

2021 ◽  
Author(s):  
Shehla Honey ◽  
Jamil Asim ◽  
Adnan Shahid Khan ◽  
Aisida O Samson ◽  
Ishaq Ahmad ◽  
...  

Electrical conductivity and optical transmittance of Nickel Nanowires (Ni-NWs) networks was reported in this work. The Ni-NWs was irradiated with 3.5 MeV, 3.8 MeV and 4.11 MeV proton (H+) ions at room temperature. The electrical conductivity of Ni-NWs networks was observed to increase with the increase in beam energies of H+ ions. With the increase in ions beam energies, electrical conductivity increases and this may be attributed to a reduction in wire-wire point contact resistance due to the irradiation-induced welding of NWs. Welding is probably initiated due to H+ ions-irradiation induced heating effect that also improved the crystalline quality of nanowires (NWs). After ion beam irradiation, localize heat is generated in nanowires due to ionization which was also verified by SRIM simulation. Optical transmittance is increased with increase in energy of H+ ions. The Ni-NWs networks subjected to an ion beam irradiation to observe corresponding changes in electrical conductivity and optical transparencies are promising for various nano-technological applications as highly transparent and conducting electrodes.


1990 ◽  
Vol 201 ◽  
Author(s):  
Dougal McCulloch ◽  
Steven Prawer

AbstractThe electrical conductivity of ion beam irradiated Glassy Carbon has been investigated in the temperature range 100 to 300 K. Ion species used were C+ and N+ with doses between 1014 and 1018 ions/cm2. Ion beam irradiation was found to lower the conductivity of Glassy Carbon by up to six orders of magnitude. The temperature dependence of the conductivity in ion beam modified Glassy Carbon has been measured. The functional dependence was found to remain largely unchanged by ion irradiation despite the large overall decrease in the conductivity. The results are interpreted in terms of a model which includes a variable range hopping and strongly scattering metallic components.


2017 ◽  
Vol 4 (7) ◽  
pp. 075055 ◽  
Author(s):  
Ahmad Ishaq ◽  
H Shehla ◽  
Naveed Zafar Ali ◽  
Waheed Akram ◽  
Khan Shakeel ◽  
...  

2007 ◽  
Vol 558-559 ◽  
pp. 1359-1362 ◽  
Author(s):  
Hiroyuki Tanaka ◽  
Shunichiro Tanaka

Cu2O conical micron-scale protrusions have been grown on a preoxidized Cu surface by the Ar ion beam irradiation at 9 kV for 5-20 min in the low vacuum. This Ar ion irradiation is based on the ‘Transcription Method’ which has been originated by B.-S. Xu and S.-I. Tanaka in 1996 to form nanoparticles. Ar ion irradiation induced needle-like nanostructures composed of Cu2O and CuO which were randomly nucleated on Cu surface by the oxidation at 623 K for 10 min in the air. The obtained Cu2O conical protrusions have a controllable length of up to 14.6 μm with diameter in the range of 0.8 μm by changing the Ar ion irradiation angle to the surface. The mechanism of the formation of the conical protrusions is proposed that Cu atoms on the Cu surface activated and sputtered by the Ar ion irradiation diffuse on the surface of needle-like oxide as nuclei along the Ar ion track and react with residual oxygen atoms to grow the conical Cu2O protrusions.


2000 ◽  
Vol 647 ◽  
Author(s):  
Raúl A. Enrique ◽  
Pascal Bellon

AbstractIon-beam irradiation can be used as a processing tool to synthesize metastable materials. A particular case is the preparation of solid solutions from immiscible alloys, which have been achieved for a whole range of systems. In this process, enhanced solute concentration is obtained through the local mixing induced by each irradiation event, which if occurring at a high enough frequency, can outweigh demixing by thermal diffusion. The resulting microstructure forms in far from equilibrium conditions, and theoretical results for these kind of driven alloys have shown that novel microstructures exhibiting self-organization can develop. To test these predictions, we prepare Ag-Cu multilayered thin films that we subject to 1 MeV Kr+-ion irradiation at temperatures ranging from room temperature to 225 °C, and characterize the specimens by x-ray diffraction, TEM and STEM. We observe two different phenomena occurring at different length scales: On the one hand, regardless of the irradiation temperature, grains grow under irradiation until reaching a size limited by film thickness (~200 nm). On the other hand, the distribution of species inside the grains is greatly affected by the irradiation temperature. At intermediate temperatures, a semi-coherent decomposition is observed at a nanometer scale. This nanometer-scale decomposition phenomenon appears as an evidence of patterning, and thus confirms on the possibility of using ion-beam irradiation as a route to synthesize nanostructured materials with novel magnetic and optical properties.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 196
Author(s):  
Xin Wu ◽  
Ruxue Yang ◽  
Xiyue Chen ◽  
Wei Liu

Nanopore structure presents great application potential especially in the area of biosensing. The two-dimensional (2D) vdW heterostructure nanopore shows unique features, while research around its fabrication is very limited. This paper proposes for the first time the use of ion beam irradiation for creating nanopore structure in 2D vdW graphene-MoS2 heterostructures. The formation process of the heterostructure nanopore is discussed first. Then, the influence of ion irradiation parameters (ion energy and ion dose) is illustrated, based on which the optimal irradiation parameters are derived. In particular, the effect of stacking order of the heterostructure 2D layers on the induced phenomena and optimal parameters are taken into consideration. Finally, uniaxial tensile tests are conducted by taking the effect of irradiation parameters, nanopore size and stacking order into account to demonstrate the mechanical performance of the heterostructure for use under a loading condition. The results would be meaningful for expanding the applications of heterostructure nanopore structure, and can arouse more research interest in this area.


1994 ◽  
Vol 339 ◽  
Author(s):  
V. Heera ◽  
R. Kögler ◽  
W. Skorupa ◽  
J. Stoemenos

ABSTRACTThe evolution of the damage in the near surface region of single crystalline 6H-SiC generated by 200 keV Ge+ ion implantation at room temperature (RT) was investigated by Rutherford backscattering spectroscopy/chanelling (RBS/C). The threshold dose for amorphization was found to be about 3 · 1014 cm-2, Amorphous surface layers produced with Ge+ ion doses above the threshold were partly annealed by 300 keV Si+ ion beam induced epitaxial crystallization (IBIEC) at a relatively low temperature of 480°C For comparison, temperatures of at least 1450°C are necessary to recrystallize amorphous SiC layers without assisting ion irradiation. The structure and quality of both the amorphous and recrystallized layers were characterized by cross-section transmission electron microscopy (XTEM). Density changes of SiC due to amorphization were measured by step height measurements.


2020 ◽  
Vol 8 (29) ◽  
pp. 9923-9930 ◽  
Author(s):  
Milan Palei ◽  
M. Motapothula ◽  
Aniruddha Ray ◽  
Ahmed L. Abdelhady ◽  
Luca Lanzano ◽  
...  

Using MeV ion irradiation, a PL enhancement effect of MAPbBr3 single crystals is demonstrated.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Shu-Yang Wang ◽  
Yong-Heng Bo ◽  
Xiang Zhou ◽  
Ji-Hong Chen ◽  
Wen-Jian Li ◽  
...  

Heavy-ion irradiation technology has advantages over traditional methods of mutagenesis. Heavy-ion irradiation improves the mutation rate, broadens the mutation spectrum, and shortens the breeding cycle. However, few data are currently available regarding its effect onStreptomyces avermitilismorphology and productivity. In this study, the influence of heavy-ion irradiation onS. avermitiliswhen cultivated in approximately 10 L stirred-tank bioreactors was investigated. The specific productivity of the avermectin (AVM) B1a-producing mutantS. avermitilis147-G58 increased notably, from 3885 to 5446 μg/mL, approximately 1.6-fold, compared to the original strain. The mycelial morphology of the mutant fermentation processes was microscopically examined. Additionally, protein and metabolite identification was performed by using SDS-PAGE, 2- and 3-dimensional electrophoresis (2DE and 3DE). The results showed that negative regulation gene deletion of mutants led to metabolic process upregulating expression of protein and improving the productivity of an avermectin B1a. The results showed that the heavy-ion beam irradiation dose that corresponded to optimal production was well over the standard dose, at approximately 80 Gy at 220 AMeV (depending on the strain). This study provides reliable data and a feasible method for increasing AVM productivity in industrial processes.


1983 ◽  
Vol 27 ◽  
Author(s):  
G. J. Clark ◽  
J. E. E. Baglin ◽  
F. M. d'Heurle ◽  
C. W. White ◽  
G. Farlow ◽  
...  

ABSTRACTIon beam irradiation of metal film/SiO2 interfaces causes reactions when the metals are those chemically capable of reducing SiO2. These reactions result in the formation of metal rich silicides in the region of the interface and an increase in the adhesion of the film to the substrate. For other nonreactive metals ion irradiation causes lateral transport of metal atoms resulting in the formation of an island structure. The results obtained by ion irradiation are compared with previous studies of high temperature thermal processing of metal films on SiO2.


Sign in / Sign up

Export Citation Format

Share Document