Nonlinear Whirling Motion of Monopile Offshore Wind Turbines Subjected to Harmonic and Seismic Base Excitations

2019 ◽  
Vol 19 (02) ◽  
pp. 1950009
Author(s):  
Zhicheng Cai ◽  
Xiang Yuan Zheng

The triggering mechanism and the vibration patterns of the nonlinear whirling motion of monopile offshore wind turbines subjected to unidirectional base excitations are investigated both theoretically and experimentally via a 64:1 scaled model of the prototype NREL-5MW monopile offshore wind turbine. For motion, two nonlinear coupled integro-differential equations containing cubic nonlinearities due to curvature and inertia are solved by both analytical and numerical methods. Harmonic and random seismic base excitations with different amplitudes and frequencies are considered in the analysis to understand the instability mechanism. Extensive shake table tests show that the experimental results have good qualitative agreements with the theoretical results, and as observed in eight load cases, the nonlinear whirling motions of nacelle do exist and tend to be induced by large harmonic excitations with structural resonant frequency.

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3915
Author(s):  
Saleh Jalbi ◽  
Joseph Hilton ◽  
Luke Jacques

Monopiles supporting offshore wind turbines can experience permanent non-recoverable rotations (or displacements) during their lifetime due to the cyclic nature of hydrodynamic and aerodynamic loading exerted on them. Recent studies in the literature have demonstrated that conventional cyclic p–y curves recommended in different codes of practice (API-RP-2GEO and DNVGL-RP-C212) may not capture the effects of long-term cyclic loads as they are independent of the loading profile and the number of applied cycles. Several published methodologies based on laboratory scaled model tests (on sands) exist to determine the effect of cyclic lateral loads on the long-term behaviour of piles. The tests vary in terms of the pile behaviour (rigid or flexible pile), number of applied loading cycles, and the load profile (one-way or two-way loading). The best-fit curves provided by these tests offer practical and cost-efficient methods to quantify the accumulated rotations when compared to Finite Element Method. It is therefore desirable that such methods are further developed to take into account different soil types and the complex nature of the loading. The objective of this paper is to compare the performance of the available formulations under the actions of a typical 35-h (hour) storm as per the Bundesamt für Seeschifffahrt und Hydrographie (BSH) recommendations. Using classical rain flow counting, the loading time-history is discretized into load packets where each packet has a loading profile and number of cycles, which then enables the computation of an equivalent number of cycles of the largest load packet. The results show that the loading profile plays a detrimental role in the result of the accumulated rotation. Furthermore, flexibility of the pile also has an important effect on the response of the pile where predictions obtained from formulations based on flexible piles resulted in a much lower accumulated rotation than tests based on rigid piles. Finally, the findings of this paper are expected to contribute in the design and interpretation of future experimental frameworks for Offshore Wind Turbine (OWT) monopiles in sands, which will include a more realistic loading profile, number of cycles, and relative soil to pile stiffness.


2019 ◽  
Vol 9 (6) ◽  
pp. 1244 ◽  
Author(s):  
Kasper Jessen ◽  
Kasper Laugesen ◽  
Signe M. Mortensen ◽  
Jesper K. Jensen ◽  
Mohsen N. Soltani

Floating offshore wind turbines are complex dynamical systems. The use of numerical models is an essential tool for the prediction of the fatigue life, ultimate loads and controller design. The simultaneous wind and wave loading on a non-stationary foundation with a flexible tower makes the development of numerical models difficult, the validation of these numerical models is a challenging task as the floating offshore wind turbine system is expensive and the testing of these may cause loss of the system. The validation of these numerical models is often made on scaled models of the floating offshore wind turbines, which are tested in scaled environmental conditions. In this study, an experimental validation of two numerical models for a floating offshore wind turbines will be conducted. The scaled model is a 1:35 Froude scaled 5 MW offshore wind turbine mounted on a tension-leg platform. The two numerical models are aero-hydro-servo-elastic models. The numerical models are a theoretical model developed in a MATLAB/Simulink environment by the authors, while the other model is developed in the turbine simulation tool FAST. A comparison between the numerical models and the experimental dynamics shows good agreement. Though some effects such as the periodic loading from rotor show a complexity, which is difficult to capture.


Author(s):  
Jose´ G. Rangel-Rami´rez ◽  
John D. So̸rensen

Deterioration processes such as fatigue and corrosion are typically affecting offshore structures. To “control” this deterioration, inspection and maintenance activities are developed. Probabilistic methodologies represent an important tool to identify the suitable strategy to inspect and control the deterioration in structures such as offshore wind turbines (OWT). Besides these methods, the integration of condition monitoring information (CMI) can optimize the mitigation activities as an updating tool. In this paper, a framework for risk-based inspection and maintenance planning (RBI) is applied for OWT incorporating CMI, addressing this analysis to fatigue prone details in welded steel joints at jacket or tripod steel support structures for offshore wind turbines. The increase of turbulence in wind farms is taken into account by using a code-based turbulence model. Further, additional modes t integrate CMI in the RBI approach for optimal planning of inspection and maintenance. As part of the results, the life cycle reliabilities and inspection times are calculated, showing that earlier inspections are needed at in-wind farm sites. This is expected due to the wake turbulence increasing the wind load. With the integration of CMI by means Bayesian inference, a slightly change of first inspection times are coming up, influenced by the reduction of the uncertainty and harsher or milder external agents.


2021 ◽  
Vol 11 (2) ◽  
pp. 574
Author(s):  
Rundong Yan ◽  
Sarah Dunnett

In order to improve the operation and maintenance (O&M) of offshore wind turbines, a new Petri net (PN)-based offshore wind turbine maintenance model is developed in this paper to simulate the O&M activities in an offshore wind farm. With the aid of the PN model developed, three new potential wind turbine maintenance strategies are studied. They are (1) carrying out periodic maintenance of the wind turbine components at different frequencies according to their specific reliability features; (2) conducting a full inspection of the entire wind turbine system following a major repair; and (3) equipping the wind turbine with a condition monitoring system (CMS) that has powerful fault detection capability. From the research results, it is found that periodic maintenance is essential, but in order to ensure that the turbine is operated economically, this maintenance needs to be carried out at an optimal frequency. Conducting a full inspection of the entire wind turbine system following a major repair enables efficient utilisation of the maintenance resources. If periodic maintenance is performed infrequently, this measure leads to less unexpected shutdowns, lower downtime, and lower maintenance costs. It has been shown that to install the wind turbine with a CMS is helpful to relieve the burden of periodic maintenance. Moreover, the higher the quality of the CMS, the more the downtime and maintenance costs can be reduced. However, the cost of the CMS needs to be considered, as a high cost may make the operation of the offshore wind turbine uneconomical.


2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Jiawen Li ◽  
Jingyu Bian ◽  
Yuxiang Ma ◽  
Yichen Jiang

A typhoon is a restrictive factor in the development of floating wind power in China. However, the influences of multistage typhoon wind and waves on offshore wind turbines have not yet been studied. Based on Typhoon Mangkhut, in this study, the characteristics of the motion response and structural loads of an offshore wind turbine are investigated during the travel process. For this purpose, a framework is established and verified for investigating the typhoon-induced effects of offshore wind turbines, including a multistage typhoon wave field and a coupled dynamic model of offshore wind turbines. On this basis, the motion response and structural loads of different stages are calculated and analyzed systematically. The results show that the maximum response does not exactly correspond to the maximum wave or wind stage. Considering only the maximum wave height or wind speed may underestimate the motion response during the traveling process of the typhoon, which has problems in guiding the anti-typhoon design of offshore wind turbines. In addition, the coupling motion between the floating foundation and turbine should be considered in the safety evaluation of the floating offshore wind turbine under typhoon conditions.


2021 ◽  
Vol 9 (6) ◽  
pp. 589
Author(s):  
Subhamoy Bhattacharya ◽  
Domenico Lombardi ◽  
Sadra Amani ◽  
Muhammad Aleem ◽  
Ganga Prakhya ◽  
...  

Offshore wind turbines are a complex, dynamically sensitive structure due to their irregular mass and stiffness distribution, and complexity of the loading conditions they need to withstand. There are other challenges in particular locations such as typhoons, hurricanes, earthquakes, sea-bed currents, and tsunami. Because offshore wind turbines have stringent Serviceability Limit State (SLS) requirements and need to be installed in variable and often complex ground conditions, their foundation design is challenging. Foundation design must be robust due to the enormous cost of retrofitting in a challenging environment should any problem occur during the design lifetime. Traditionally, engineers use conventional types of foundation systems, such as shallow gravity-based foundations (GBF), suction caissons, or slender piles or monopiles, based on prior experience with designing such foundations for the oil and gas industry. For offshore wind turbines, however, new types of foundations are being considered for which neither prior experience nor guidelines exist. One of the major challenges is to develop a method to de-risk the life cycle of offshore wind turbines in diverse metocean and geological conditions. The paper, therefore, has the following aims: (a) provide an overview of the complexities and the common SLS performance requirements for offshore wind turbine; (b) discuss the use of physical modelling for verification and validation of innovative design concepts, taking into account all possible angles to de-risk the project; and (c) provide examples of applications in scaled model tests.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 579
Author(s):  
Taimoor Asim ◽  
Sheikh Zahidul Islam ◽  
Arman Hemmati ◽  
Muhammad Saif Ullah Khalid

Offshore wind turbines are becoming increasingly popular due to their higher wind energy harnessing capabilities and lower visual pollution. Researchers around the globe have been reporting significant scientific advancements in offshore wind turbines technology, addressing key issues, such as aerodynamic characteristics of turbine blades, dynamic response of the turbine, structural integrity of the turbine foundation, design of the mooring cables, ground scouring and cost modelling for commercial viability. These investigations range from component-level design and analysis to system-level response and optimization using a multitude of analytical, empirical and numerical techniques. With such wide-ranging studies available in the public domain, there is a need to carry out an extensive yet critical literature review on the recent advancements in offshore wind turbine technology. Offshore wind turbine blades’ aerodynamics and the structural integrity of offshore wind turbines are of particular importance, which can lead towards system’s optimal design and operation, leading to reduced maintenance costs. Thus, in this study, our focus is to highlight key knowledge gaps in the scientific investigations on offshore wind turbines’ aerodynamic and structural response. It is envisaged that this study will pave the way for future concentrated efforts in better understanding the complex behavior of these machines.


2021 ◽  
Vol 11 (24) ◽  
pp. 11665
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chao Wang ◽  
Yuangang Tu

Spar-type floating offshore wind turbines commonly vibrate excessively when under the coupling impact of wind and wave. The wind turbine vibration can be controlled by developing its mooring system. Thus, this study proposes a novel mooring system for the spar-type floating offshore wind turbine. The proposed mooring system has six mooring lines, which are divided into three groups, with two mooring lines in the same group being connected to the same fairlead. Subsequently, the effects of the included angle between the two mooring lines on the mooring-system’s performance are investigated. Then, these six mooring lines are connected to six independent fairleads for comparison. FAST is utilized to calculate wind turbine dynamic response. Wind turbine surge, pitch, and yaw movements are presented and analyzed in time and frequency domains to quantitatively evaluate the performances of the proposed mooring systems. Compared with the mooring system with six fairleads, the mooring system with three fairleads performed better. When the included angle was 40°, surge, pitch, and yaw movement amplitudes of the wind turbine reduced by 39.51%, 6.8%, and 12.34%, respectively, when under regular waves; they reduced by 56.08%, 25.00%, and 47.5%, respectively, when under irregular waves. Thus, the mooring system with three fairleads and 40° included angle is recommended.


2020 ◽  
Author(s):  
Auraluck Pichitkul ◽  
Lakshmi N. Sankar

Abstract Wind engineering technology has been continuously investigated and developed over the past several decades in response to steadily growing demand for renewable energy resources, in order to meet the increased demand for power production, fixed and floating platforms with different mooring configurations have been fielded, accommodating large-scale offshore wind turbines in deep water areas. In this study, the aerodynamic loads on such systems are modeled using a computational structural dynamics solver called OpenFAST developed by National Renewable Energy Laboratory, coupled to an in-house computational fluid dynamics solver called GT-Hybrid. Coupling of the structural/aerodynamic motion time history with the CFD analysis is done using an open File I/O process. At this writing, only a one-way coupling has been attempted, feeding the blade motion and structural deformations from OpenFAST into the fluid dynamics analysis. The sectional aerodynamic loads for a large scale 5 MW offshore wind turbine are presented, and compared against the baseline OpenFAST simulations with classical blade element-momentum theory. Encouraging agreement has been observed.


Sign in / Sign up

Export Citation Format

Share Document