CHARACTERIZATION OF THE EFFECT OF ANISOTROPY ON STRESS CONCENTRATION IN BOVINE PERICARDIAL TISSUE

2005 ◽  
Vol 05 (03) ◽  
pp. 397-413
Author(s):  
ŞEBNEM ÖZÜPEK ◽  
HENGCHU CAO

Characterization of anisotropy is studied in a bovine pericardial tissue undergoing non-homogeneous deformations. The purpose of this study is not to formulate an exact constitutive model for a particular tissue, but to develop a methodology for the measurement and representation of the stress-strain behavior of soft planar tissues, such as pericardium. Tissue samples with a central circular hole are subjected to uniaxial loading. A procedure for measuring local displacements is developed. Various constitutive models differing mainly in their representation of anisotropy are considered to simulate the test. The comparison of displacement and strain predictions with the measured values show that although the isotropic model has a good agreement with the data in the loading direction, the introduction of anisotropy is necessary to capture the essential characteristics of the test. The procedure provides a more realistic evaluation of the constitutive models, hence is more useful for stress analysis purposes.

2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Maureen L. Dreher ◽  
Srinidhi Nagaraja ◽  
Jorgen Bergstrom ◽  
Danika Hayman

Computational modeling is critical to medical device development and has grown in its utility for predicting device performance. Additionally, there is an increasing trend to use absorbable polymers for the manufacturing of medical devices. However, computational modeling of absorbable devices is hampered by a lack of appropriate constitutive models that capture their viscoelasticity and postyield behavior. The objective of this study was to develop a constitutive model that incorporated viscoplasticity for a common medical absorbable polymer. Microtensile bars of poly(L-lactide) (PLLA) were studied experimentally to evaluate their monotonic, cyclic, unloading, and relaxation behavior as well as rate dependencies under physiological conditions. The data were then fit to a viscoplastic flow evolution network (FEN) constitutive model. PLLA exhibited rate-dependent stress–strain behavior with significant postyield softening and stress relaxation. The FEN model was able to capture these relevant mechanical behaviors well with high accuracy. In addition, the suitability of the FEN model for predicting the stress–strain behavior of PLLA medical devices was investigated using finite element (FE) simulations of nonstandard geometries. The nonstandard geometries chosen were representative of generic PLLA cardiovascular stent subunits. These finite element simulations demonstrated that modeling PLLA using the FEN constitutive relationship accurately reproduced the specimen’s force–displacement curve, and therefore, is a suitable relationship to use when simulating stress distribution in PLLA medical devices. This study demonstrates the utility of an advanced constitutive model that incorporates viscoplasticity for simulating PLLA mechanical behavior.


2007 ◽  
Vol 546-549 ◽  
pp. 81-88
Author(s):  
Xiang Guo Zeng ◽  
Qing Yuan Wang ◽  
Jing Hong Fan ◽  
Zhan Hua Gao ◽  
Xiang He Peng

The stress-strain behavior of cast magnesium alloy (AM60) was investigated by strain-controlled cyclic testing carried out on MTS. In order to describe the cyclic stress and strain properties of AM60 by means of the energy storing characteristics of microstructure during irreversible deformation, a plastic constitutive model with no yielding surface was developed for single crystal by adopting a spring-dashpot mechanical system. Plastic dashpots reflecting the material transient response were introduced to describe the plasticity of slip systems. By utilizing the KBW self-consistent theory, a polycrystalline plastic constitutive model for Magnesium alloy was formed. The numerical analysis in the corresponding algorithm is greatly simplified as no process of searching for the activation of the slip systems and slip directions is required. The cyclic stress-strain behavior, based on this model, is discussed. The simulation results show good agreement with the experimental data for AM60.


2011 ◽  
Vol 243-249 ◽  
pp. 2211-2215
Author(s):  
Dong Mei Yang ◽  
Xiang Bo Qiu

Cyclic loads are commonly encountered in geotechnical engineering; however most constitutive models do not account for the effect that such loads can have on the mechanical behaviour of soils and rocks. This work is concerned with the behaviour of jointed rock and, as the overall mechanical behaviour of jointed rock is usually dominated by the mechanical behaviour of the joints, it is focused on the behaviour of rock joints under cyclic loads. In particular, an extension of the existed constitutive model for cyclically loaded rock joints is presented. Variations of rock joint stiffness in both the normal and the shear directions of loading due to surface degradation are taken into account. The degradation of asperities of first and second order is considered, while a new relation is proposed for the joint stiffness in the normal direction during unloading. Numerical simulation results show good agreement of model predictions with existing experimental results.


2006 ◽  
Vol 306-308 ◽  
pp. 989-994 ◽  
Author(s):  
M. Nizar Machmud ◽  
Masaki Omiya ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto

Based on previous available constitutive models, a phenomenological constitutive model has been constructed and is proposed to describe the strain, strain rate and temperature dependentdeformation behavior of PC/ABS blends. In this paper, four quasi-static uniaxial tension tests of a specimen tested at different strain rates and temperatures were used to identify the constitutive model constants. By using the proposed constitutive model, predicting the stress-strain behavior of the PC/ABS blend tested at certain strain rate and different temperatures compares well to the behavior exhibited from the tests. From comparison between the DSGZ and the proposed models, proposed model shows a better prediction. Evaluation of the proposed constitutive model was also presented and it has revealed that the proposed model might have a potential to be used for predicting a wide range of temperatures and high strain rates behavior of PC/ABS blends.


2016 ◽  
Vol 16 (03) ◽  
pp. 1650023 ◽  
Author(s):  
PIERO GIOVANNI PAVAN ◽  
PAOLA PACHERA ◽  
SILVIA TODROS ◽  
CESARE TIENGO ◽  
ARTURO NICOLA NATALI

Bioprostheses obtained from animal models are often adopted in abdominal surgery for repair and reconstruction. The functionality of these prosthetic implants is related also to their mechanical characteristics that are analyzed here. This work illustrates a constitutive model to describe the short-term mechanical response of Permacol[Formula: see text] bioprostheses. Experimental tests were developed on tissue samples to highlight mechanical non-linear characteristics and viscoelastic phenomena. Uni-axial tensile tests were developed to evaluate the strength and strain stiffening. Incremental uni-axial stress relaxation tests were carried out at nominal strain ranging from 10% to 20% and to monitor the stress relaxation process up to 400[Formula: see text]s. The constitutive model effectively describes the mechanical behavior found in experimental testing. The mechanical response appears to be independent on the loading direction, showing that the tissue can be considered as isotropic. The viscoelastic response of the tissue shows a strong decay of the stress in the first seconds of the relaxation process. The investigation performed is aimed at a general characterization of the biomechanical response and addresses the development of numerical models to evaluate the biomechanical performance of the graft with surrounding host tissues.


Author(s):  
Ruogang Zhao ◽  
Krista Lynn Sider ◽  
Craig A. Simmons

Micropipette aspiration (MA) has been widely used to measure the biomechanical properties of cells and biomaterials [1]. Typically a linear elastic half-space model is used to fit the experimental load-deformation data [1]. However, load-deformation relationships for most biological tissues are highly nonlinear, suggesting alternative constitutive models are necessary. In the case of aortic heart valve tissue, exponential-type constitutive models have been found to fit the biaxial stress-strain behavior well [2]. Based on these studies, Butcher et al. used an exponential constitutive model to characterize the response of chicken embryonic valve (atrioventricular cushion) under MA [3]. To do so, they implemented an analytical exponential constitutive model [2] and directly related the stress and strain to the experimentally measured pressure and aspiration length. This allowed the authors to fit the tissue MA data without accounting for the complexities of the boundary conditions and multicomponent strain field inherent in MA. However, it is unclear whether the material parameters estimated using this approach are different from those estimated by solving the more complex boundary value problem, which presumably more faithfully simulates the physical process of tissue aspiration.


1984 ◽  
Vol 106 (1) ◽  
pp. 43-45
Author(s):  
T. Y. Chen ◽  
B. Z. Chen ◽  
Y. Q. Wang

An analytical method for the stress analysis of tubular joints of T, Y, K type is presented in this paper. The stress distribution and stress concentration factor of the joints are calculated. Numerical results are in good agreement with the experimental results.


2021 ◽  
Vol 1 ◽  
pp. 113-115
Author(s):  
Uwe Düsterloh ◽  
Svetlana Lerche

Abstract. The conceptual plans for the final underground disposal of radioactive waste in rock salt formations are based on extensive backfilling with crushed salt of the residual cavities left after waste deposition. It is therefore of particular importance for the historical and prognostic analysis of the load-bearing behavior and impermeability of a final repository in rock salt to demonstrate that compaction of the crushed salt backfill, which progresses over time, is suitable to seal the breaches in the geological barrier created during the underground excavation of the cavity in the long term such that safe containment of the waste is ensured. Relevant investigations on the thermal-hydraulic-mechanical (THM) behavior of crushed salt revealed that the constitutive models for the description of crushed salt compaction, which have regularly been based on the evaluation of oedometer tests, are not suitable for a sufficiently realistic representation of the essentially three-dimensional stress-strain behavior of crushed salt depending on the external load in space and time. Evidence for the above statement lies in particular in the fact that even when standardized mixtures of crushed salt are used, a computational reanalysis of compaction tests using a standardized set of parameters has hitherto been unsuccessful when different loading scenarios were specified for these laboratory tests. This means that deformations and porosities measured in the context of one individual laboratory tests can currently only be reanalyzed in sufficient quantity, irrespective of the choice of constitutive model, if the model parameters are determined in relation to this test. As a result, it must be stated that, on the one hand, the compaction behavior of crushed salt in space and time is not yet definitively understood, while, on the other hand, to ensure reliable, robust and sufficiently realistic statements to be made on compaction behavior, and thus to prove the safe containment of radioactive waste in rock salt, the availability of extensive systematically and sufficiently validated constitutive models is indispensable. This presentation introduces a methodological approach for the systematic and structured development and validation of multiphysical constitutive models, an approach that has meanwhile been successfully tested many times. The practical application of this methodology will be presented here using the example of a constitutive model that takes into account the triaxial stress-strain behavior of crushed salt. The individual development and validation steps are documented for the crushed salt model, EXPO-COM, newly developed at the Chair for Waste Disposal Technologies and Geomechanics. Validation of the constitutive model is performed by means of a back-analysis of triaxial long-term crushed salt compaction tests as follows: Test TK-031 of the German Federal Institute for Geosciences and Natural Resources (Bundesanstalt für Geowissenschaften und Rohstoffe, BGR) for isotropic load conditions Tests V1 (dry), V2 (w=0.1 %), and V3 (wet) of the German Society for Plant and Reactor Safety (Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH, GRS) for different stresses and temperature levels as well as humidity Test TUC_V2 of the Clausthal University of Technology (TUC) for isotropic and deviatoric stress conditions. The TUC_V2 test characterizes, in the context of the methodology for the structured development and validation of multiphysical constitutive models, an innovative test method geared towards constitutive model development, in which the loading boundary conditions specified in the test guarantee the isolated analysis of individual factors influencing compaction behavior (Fig. 1). A description of the tests and test techniques that are still required for the full development and validation of the EXPO-COM constitutive model planned as part of the KOMPASS II research project is given together with a description of methodological guidelines relating to requirements on reliability, functionality, practicability, and validity ranges of the EXPO-COM constitutive model (Fig. 2). As a result of the subsequently possible comparison of experimentally validated and not yet validated dependencies or process variables, a validation status is defined for the constitutive model EXPO-COM. This validation status shows which factors influencing the THM-coupled material behavior of crushed salt are currently sufficiently realistically taken into account, and which influencing factors cannot yet be validated by the constitutive model. The main objectives of the tests to be carried out as part of the KOMPASS II research project include: Continued validation based on the systematized database to be created in KOMPASS II. Testing of the constitutive model in the context of numerical analyses of the predictive quality and numerical stability of the constitutive model for in situ relevant stress boundary conditions, prediction times and material properties.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2731
Author(s):  
Ameya Rege

The macroscopic mechanical behavior of open-porous cellular materials is dictated by the geometric and material properties of their microscopic cell walls. The overall compressive response of such materials is divided into three regimes, namely, the linear elastic, plateau and densification. In this paper, a constitutive model is presented, which captures not only the linear elastic regime and the subsequent pore-collapse, but is also shown to be capable of capturing the hardening upon the densification of the network. Here, the network is considered to be made up of idealized square-shaped cells, whose cell walls undergo bending and buckling under compression. Depending on the choice of damage criterion, viz. elastic buckling or irreversible bending, the cell walls collapse. These collapsed cells are then assumed to behave as nonlinear springs, acting as a foundation to the elastic network of active open cells. To this end, the network is decomposed into an active network and a collapsed one. The compressive strain at the onset of densification is then shown to be quantified by the point of intersection of the two network stress-strain curves. A parameter sensitivity analysis is presented to demonstrate the range of different material characteristics that the model is capable of capturing. The proposed constitutive model is further validated against two different types of nanoporous materials and shows good agreement.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1259
Author(s):  
Dmitry Kozlov ◽  
Irina Munina ◽  
Pavel Turalchuk ◽  
Vitalii Kirillov ◽  
Alexey Shitvov ◽  
...  

A new implementation of a beam-steering transmitarray is proposed based on the tiled array architecture. Each pixel of the transmitarray is manufactured as a standalone unit which can be hard-wired for specific transmission characteristics. A set of complementary units, providing reciprocal phase-shifts, can be assembled in a prescribed spatial phase-modulation pattern to perform beam steering and beam forming in a broad spatial range. A compact circuit model of the tiled unit cell is proposed and characterized with full-wave electromagnetic simulations. Waveguide measurements of a prototype unit cell have been carried out. A design example of a tiled 10 × 10-element 1-bit beam-steering transmitarray is presented and its performance benchmarked against the conventional single-panel, i.e., unibody, counterpart. Prototypes of the tiled and single-panel C-band transmitarrays have been fabricated and tested, demonstrating their close performance, good agreement with simulations and a weak effect of fabrication tolerances. The proposed transmitarray antenna configuration has great potential for fifth-generation (5G) communication systems.


Sign in / Sign up

Export Citation Format

Share Document