A MATHEMATICAL MODEL OF BLOOD FLOW IN AN INTRACRANIAL ANEURYSM: ANALYTICAL AND NUMERICAL STUDY

2006 ◽  
Vol 06 (02) ◽  
pp. 137-151 ◽  
Author(s):  
SVETOSLAV NIKOLOV ◽  
STOYAN STOYTCHEV

An aneurysm is a local enlargement of the vessel lumen due to the weakening of the wall material. We propose a mathematical model of the pulsatile blood flow through the system consisting of the cerebral artery and an aneurysm. The mathematical model is based on mass and energy conservation laws. It comprises non-linear rheological properties of the aneurysm and artery, and inertial and resistant properties of the blood flow. The model equations are analyzed by the methods of non-linear dynamics and they are solved numerically. Special attention is paid to the flow stability as a function of the aneurysmal and arterial material properties, the mean and oscillating arterial pressure, and the frequency of heart pulsations. The results of the work can be summarized as follows: (i) the model equations are stable at normal physiological conditions and developed aneurysms, (ii) with decreasing of the aneurysmal compliance, the aneurysmal volume pulsations increase and a limit point of flow stability is approached, (iii) the increased amplitude of the pulsatile pressure and the heart frequency cannot lead to flow instabilities.

Author(s):  
S-J Seo ◽  
K-Y Kim ◽  
S-H Kang

A numerical study is presented for Reynolds-averaged Navier-Stokes analysis of three-dimensional turbulent flows in a multiblade centrifugal fan. Present work aims at development of a relatively simple analysis method for these complex flows. A mathematical model of impeller forces is obtained from the integral analysis of the flow through the impeller. A finite volume method for discretization of governing equations and a standard k-ɛ model as turbulence closure are employed. For the validation of the mathematical model, the computational results for velocity components, static pressure, and flow angles at the exit of the impeller were compared with experimental data. The comparisons show generally good agreement, especially at higher flow coefficients.


2011 ◽  
Vol 04 (02) ◽  
pp. 207-225 ◽  
Author(s):  
J. C. MISRA ◽  
A. SINHA ◽  
G. C. SHIT

In this paper, a mathematical model has been developed for studying blood flow through a porous vessel with a pair of stenoses under the action of an externally applied magnetic field. Blood flowing through the artery is considered to be Newtonian. This model is consistent with the principles of ferro-hydrodynamics and magnetohydrodynamics. Expressions for the velocity profile, volumetric flow rate, wall shear stress and pressure gradient have been derived analytically under the purview of the model. The above said quantities are computed for a specific set of values of the different parameters involved in the model analysis. This serves as an illustration of the validity of the mathematical model developed here. The results estimated on the basis of the computation are presented graphically. The obtained results for different values of the parameters involved in the problem under consideration, show that the flow is appreciably influenced by the presence of magnetic field and the rise in the hematocrit level.


1998 ◽  
Vol 2 ◽  
pp. 23-30
Author(s):  
Igor Basov ◽  
Donatas Švitra

Here a system of two non-linear difference-differential equations, which is mathematical model of self-regulation of the sugar level in blood, is investigated. The analysis carried out by qualitative and numerical methods allows us to conclude that the mathematical model explains the functioning of the physiological system "insulin-blood sugar" in both normal and pathological cases, i.e. diabetes mellitus and hyperinsulinism.


2021 ◽  
Vol 1094 (1) ◽  
pp. 012120
Author(s):  
Hussein Togun ◽  
Ali Abdul Hussain ◽  
Saja Ahmed ◽  
Iman Abdul hussain ◽  
Huda Shaker

Author(s):  
Vladimir Grinkevich ◽  

The evaluation of the mathematical model parameters of a non-linear object with a transport delay is considered in this paper. A temperature controlled stage based on a Peltier element is an identification object in the paper. Several input signal implementations are applied to the input of the identification object. The least squares method is applied for the calculation of the non-linear differential equitation parameters which describe the identification object. The least squares method is used due to its simplicity and the possibility of identification non-linear objects. The parameters values obtained in the process of identification are provided. The plots of temperature changes in the temperature control system with a controller designed based on the mathematical model of the control object obtained as a result of identification are shown. It is found that the mathematical model obtained in the process of identification may be applied to design controllers for non-linear systems, in particular for a temperature stage based on a Peltier element, and for self-tuning controllers. However, the least square method proposed in the paper cannot estimate the transport delay time. Therefore it is required to evaluate the time delay by temperature transient processes. Dynamic object identification is applied when it is required to obtain a mathematical model structure and evaluate the parameters by an input and output control object signal. Also, identification is applied for auto tuning of controllers. A mathematical model of a control object is required to design the controller which is used to provide the required accuracy and stability of control systems. Peltier elements are applied to design low-power and small- size temperature stage . Hot benches based on a Peltier element can provide the desired temperature above and below ambient temperature.


1970 ◽  
Vol 37 (1) ◽  
pp. 34-37 ◽  
Author(s):  
George Rudinger

If the nonlinear equations for nonsteady blood flow are solved by the method of characteristics, shock discontinuities may develop as a result of omitting from the mathematical model some aspect of the system that becomes significant at rapid flow changes. As an illustration, the flow from the heart into the aorta at the beginning of systole is analyzed. An equation is derived which yields shock formation distances between a few centimeters and several meters depending on the elastic properties of the aorta. Since knowledge of the actual wave form would be useful for computer programming, a few exploratory experiments were performed with an unrestrained latex tube. They indicated wave transitions extending over several tube diameters, but maximum steepening of the wave has not yet been achieved.


2013 ◽  
Vol 17 (16) ◽  
pp. 1821-1834 ◽  
Author(s):  
Hamidreza Ghasemi Bahraseman ◽  
Kamran Hassani ◽  
Mahdi Navidbakhsh ◽  
Daniel M. Espino ◽  
Zahra Alizadeh Sani ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yong Song ◽  
Yibin Li ◽  
Caihong Li ◽  
Xin Ma

This paper presents a mathematical model of multirobot cooperative hunting behavior. Multiple robots try to search for and surround a prey. When a robot detects a prey it forms a following team. When another “searching” robot detects the same prey, the robots form a new following team. Until four robots have detected the same prey, the prey disappears from the simulation and the robots return to searching for other prey. If a following team fails to be joined by another robot within a certain time limit the team is disbanded and the robots return to searching state. The mathematical model is formulated by a set of rate equations. The evolution of robot collective hunting behaviors represents the transition between different states of robots. The complex collective hunting behavior emerges through local interaction. The paper presents numerical solutions to normalized versions of the model equations and provides both a steady state and a collaboration ratio analysis. The value of the delay time is shown through mathematical modeling to be a strong factor in the performance of the system as well as the relative numbers of the searching robots and the prey.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 379 ◽  
Author(s):  
Waqar A. Khan ◽  
A.M. Rashad ◽  
S.M.M. EL-Kabeir ◽  
A.M.A. EL-Hakiem

Recently, nanoparticles have supplied diverse challenges in the area of science. The nanoparticles suspended in several conventional fluids can convert the fluids flow and heat transmission features. In this investigation, the mathematical approach is utilized to explore the magnetohydrodynamics micropolar-nanofluid flow through a truncated porous cone. In this mathematical model, non-linear radiation and suction/injection phenomena are also scrutinized with the Tiwari-Das nanoliquid pattern. The designed system of the mathematical model of the boundary value problem is converted to a set of dimensionless non-similar equations applying convenient transformations. In this study, kerosene oil is selected as the base fluid, while the nanoparticles of Fe3O4 are utilized to promote the heat transmission rate. The problem is solved numerically using the Runge-Kutta-Fehlberg method (RKF45). It is demonstrated that an enhancement in the pertinent parameters improves the heat transmission rate.


Sign in / Sign up

Export Citation Format

Share Document