COMPUTER-BASED MECHANICAL ANALYSIS OF STENOSED ARTERY WITH THROMBOTIC PLAQUE: THE INFLUENCES OF IMPORTANT PHYSIOLOGICAL PARAMETERS

2012 ◽  
Vol 12 (04) ◽  
pp. 1250069 ◽  
Author(s):  
XIAOHONG WANG ◽  
XIAOYANG LI

The thrombus is the inappropriate activation of hemostasis in vascular system. In this paper, biomechanical factors affecting the behaviors of artery with intraluminal thrombus were studies. Results indicated that heart rate and blood viscosity had strong impact on the compliance of the stenosis artery and flow pattern. The alteration in blood viscosity had stronger influence than cardiac cycle on the volume change of the fluid region surrounded by thrombus. von Mises stress measured at the thinnest region of the plaque had the largest time-averaged value. The alteration of these parameters could potentially lead to stress redistribution at intraluminal thrombus.

Author(s):  
Ershad Mortazavian ◽  
Zhiyong Wang ◽  
Hualiang Teng

The complicated steel wheel and rail interaction on curve causes side wear on rail head. Thus, the cost of maintenance for the track on curve is significantly higher than that for track on a tangent. The objective of this research is to develop 3D printing technology for repairing the side wear. In this paper, the study examines induced residual thermal stresses on a rail during the cooling down process after 3D printing procedure using the coupled finite volume and finite element method for thermal and mechanical analysis respectively. The interface of the railhead and additive materials should conserve high stresses to prevent any crack initiation. Otherwise, the additive layer would likely shear off the rail due to crack propagation at the rail/additive interface. In the numerical analysis, a cut of 75-lb ASCE (American Society of Civil Engineers) worn rail is used as a specimen, for which a three-dimensional model is developed. The applied residual stresses, as a result of temperature gradient and thermal expansion coefficient mismatch between additive and rail materials, are investigated. At the beginning, the worn rail is at room temperature while the additive part is at a high initial temperature. Then, additive materials start to flow thermal energy into the worn rail and the ambient. The thermal distribution results from thermal analysis are then employed as thermal loads in the mechanical analysis to determine the von-Mises stress distribution as the decisive component. Then, the effect of preheating on residual stress distribution is studied. In this way, the thermo-mechanical analysis is repeated with an increase in railhead’s initial temperature. In thermal analysis, the temperature contours at different time steps for both the non-preheated and preheated cases indicate that preheating presents remarkably lower temperature gradient between rail and additive part and also represents a more gradual cooling down process to allow enough time for thermal expansion mismatch alignment. In mechanical analysis, the transversal von-Mises stress distribution at rail/additive interface is developed for all cases for comparison purposes. It is shown that preheating is a key factor to significantly reduce residual stresses by about 40% at all points along transversal direction of interface.


2011 ◽  
Vol 2-3 ◽  
pp. 700-705
Author(s):  
Kai Yuan Hao ◽  
Wei Min Wang ◽  
Yong Qiang Shi ◽  
Sha Sha Wang

The purpose of the study described in this paper was to investigate the impact of shroud curvature on the performance of a centrifugal impeller or stage. The paper discusses a computational fluid dynamics (CFD) study done to assess the influence of shroud curvature on impeller performance. The computational fluid dynamics (CFD) and finite element analyses (FEA) methods were used to describe the various designs of the impeller. Aerodynamic and mechanical analysis results are presented for four impellers of varying cover curvature and axial length. The aerodynamic results showed there were clear aerodynamic benefits to decreasing the curvature along the impeller shroud. The mechanical analytical results showed that the impeller with the lowest curvature or longest axial length provided the highest performance; it also yielded the lowest Von Mises stress level. In closing, there are clear aerodynamic benefits to decreasing the curvature along the impeller shroud but these benefits must be weighed against the impact on the rotordynamic considerations Comments are offered regarding the rotordynamic issues that must be considered when increasing the length of impellers.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3098
Author(s):  
Fusheng Wang ◽  
Zheng Wei ◽  
Pu Li ◽  
Lingjun Yu ◽  
Weichao Huang

In aircraft engineering, an increase of internal pressure in a hydraulic pipe increases the probability of pipe damage, leading to crack propagation becoming a serious issue. In this study, the extended finite element method (XFEM) is applied to simulate initial crack propagation in hydraulic pipes and to investigate the influence factors. Stress intensity factors are extracted to verify the mesh independence of XFEM, which is based on the level set method and unit decomposition method. A total of 30 finite element models of hydraulic pipes with cracks are established. The distribution of von Mises stress under different initial crack lengths and internal pressures is obtained to analyze the change of load-carrying capacity in different conditions. Then, a total of 300 finite element models of hydraulic pipes with different initial crack sizes and locations are simulated under different working conditions. The relationship between the maximum opening displacement and crack length is analyzed by extracting the opening displacement under different initial crack lengths. The length and depth of the initial crack are changed to analyze the factors affecting crack propagation. The opening size and crack propagation length are obtained in different directions. The results show that radial propagation is more destructive than longitudinal propagation for hydraulic pipes in the initial stage of crack propagation.


2012 ◽  
Vol 197 ◽  
pp. 174-178 ◽  
Author(s):  
Xin Hua Wang ◽  
Xiu Xia Cao ◽  
Shu Wen Sun ◽  
Yan Gao

The main components of the opposed biconinal cone screw high-pressure seawater hydraulic pump is the rubber bush and metal cone screw, and the interaction of the bush and cone screw is one of the main factors affecting the novel pump performance. The deformation and stress of the bush and cone screw under the initial interference is analyzed by the nonlinear finite element analysis. The analysis shows that: under the effect of the initial interference, large displacement is present to the radial surface of the cone screw, and the displacement of the radial surface mainly affects the displacement vector sum of the cone screw, and the deformation decreases gradually from the middle to the ends of the cone screw, while the cone screw is bending; the deformation in three direction of the bush is close to each other, but the location of the maximum displacement in each direction is different; with the shrink range increasing, the deformation of the cone screw and bush increases, but the deformation of the cone screw is much smaller than that of bush, so the deformation of the bush mainly affects the seal between the cone screw and bush, and the shrink range between the cone screw and bush decreases because of the deformation of the bush. Over the role of the interference force, the maximum von mises stress of the cone screw is an order larger than that of bush, and the maximum von mises stress both increases with the shrink range increasing; although shrink range is different, the location of the maximum von mises about the cone screw and bush is the same.


2017 ◽  
Vol 2 (2) ◽  
pp. 124 ◽  
Author(s):  
Ignatius Pulung Nurprasetio ◽  
Bentang Arief Budiman ◽  
Farid Triawan

This paper presented the investigation of failure mechanism of plastic shredding machine’s flange coupling which is made of cast steel. The machine unexpectedly stalled a few minutes after High-Density Polyethylene (HDPE) plastic bottles were fed into the machine. It was discovered afterward that the flange broke with the large crack surface. Finite element analysis (FEA) was performed to find the position and value of the critical stresses in the flange during operating condition. Subsequently, hardness test was conducted on the flange body to determine the Brinell hardness which was then converted into the approximate ultimate tensile strength (σu). As a result, a maximum Von Mises stress of 287 MPa was confirmed from the FEA to be concentrated in the flange’s keyway. Although this was found to be lower than the approximate σu obtained from hardness testing i.e. 449 MPa, the critical stress indicated an unstable condition which may induce a crack initiation any time when vibration or dynamic load occurs. Based on these analyses, it was concluded that the failure had been initiated by dynamic rather than static loading generated during machine stall condition. The dynamic load caused crack initiation at a stress concentration point of the keyway. The crack then propagated rapidly, breaking the flange body.


2020 ◽  
Vol 23 (1) ◽  
pp. 89-93
Author(s):  
Rana Idan Abed ◽  
Sadiq Jaafer Abbas ◽  
Walead Abd Al-Hasan Alsaadan

The aim of this study was to support surgeons to decide where to place the screws in order to achieve an optimal fracture healing and to prevent implant failure after a femoral shaft fracture So this paper focus on the analysis of bone-plate construct by using Finite element Analysis (FEA), comminuted femur fractured bone fixed with Dynamic Compression Plate (DCP) 16 holes by 4.5 Cortex screws, to investigate the effects of screws configuration on the mechanical behavior of different seven model as Interfragmentary strain which is the most important factor for femur fracture healing. The results state the relationships between the Von-Mises stress, Total deformation and Interfragmentary strain with respect to the screws configuration. The study shows the regions of maximum stress from stress distribution and also founded that we can decrease the Interfragmentary strain by increasing the number of screws.


Author(s):  
Saeed Nokar ◽  
Hamid Jalali ◽  
Farideh Nozari ◽  
Mahnaz Arshad

Objectives: The success of implant treatment depends on many factors affecting the bone-implant, implant-abutment, and abutment-prosthesis interfaces. Stress distribution in bone plays a major role in success/failure of dental implants. This study aimed to assess the pattern of stress distribution in bone and abutment-implant interface under static and cyclic loadings using finite element analysis (FEA). Materials and Methods: In this study, ITI implants (4.1×12 mm) placed at the second premolar site with Synocta abutments and metal-ceramic crowns were simulated using SolidWorks 2007 and ABAQUS software. The bone-implant contact was assumed to be 100%. The abutments were tightened with 35 Ncm preload torque according to the manufacturer’s instructions. Static and cyclic loads were applied in axial (116 Ncm), lingual (18 Ncm), and mesiodistal (24 Ncm) directions. The maximum von Mises stress and strain values ​​were recorded. Results: The maximum stress concentration was at the abutment neck during both static and cyclic loadings. Also, maximum stress concentration was observed in the cortical bone. The loading stress was higher in cyclic than static loading. Conclusion: Within the limitations of this study, it can be concluded that the level of stress in single-unit implant restorations is within the tolerable range by bone.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


2020 ◽  
Vol 1 (1) ◽  
pp. 93-102
Author(s):  
Carsten Strzalka ◽  
◽  
Manfred Zehn ◽  

For the analysis of structural components, the finite element method (FEM) has become the most widely applied tool for numerical stress- and subsequent durability analyses. In industrial application advanced FE-models result in high numbers of degrees of freedom, making dynamic analyses time-consuming and expensive. As detailed finite element models are necessary for accurate stress results, the resulting data and connected numerical effort from dynamic stress analysis can be high. For the reduction of that effort, sophisticated methods have been developed to limit numerical calculations and processing of data to only small fractions of the global model. Therefore, detailed knowledge of the position of a component’s highly stressed areas is of great advantage for any present or subsequent analysis steps. In this paper an efficient method for the a priori detection of highly stressed areas of force-excited components is presented, based on modal stress superposition. As the component’s dynamic response and corresponding stress is always a function of its excitation, special attention is paid to the influence of the loading position. Based on the frequency domain solution of the modally decoupled equations of motion, a coefficient for a priori weighted superposition of modal von Mises stress fields is developed and validated on a simply supported cantilever beam structure with variable loading positions. The proposed approach is then applied to a simplified industrial model of a twist beam rear axle.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 757
Author(s):  
Tianyi Su ◽  
Wenqing Zhang ◽  
Zhijun Zhang ◽  
Xiaowei Wang ◽  
Shiwei Zhang

A 2D axi-symmetric theoretical model of dielectric porous media in intermittent microwave (IMW) thermal process was developed, and the electromagnetic energy, multiphase transport, phase change, large deformation, and glass transition were taken into consideration. From the simulation results, the mass was mainly carried by the liquid water, and the heat was mainly carried by liquid water and solid. The diffusion was the dominant mechanism of the mass transport during the whole process, whereas for the heat transport, the convection dominated the heat transport near the surface areas during the heating stage. The von Mises stress reached local maxima at different locations at different stages, and all were lower than the fracture stress. A material treated by a longer intermittent cycle length with the same pulse ratio (PR) tended to trigger the phenomena of overheat and fracture due to the more intense fluctuation of moisture content, temperature, deformation, and von Mises stress. The model can be extended to simulate the intermittent radio frequency (IRF) process on the basis of which one can select a suitable energy source for a specific process.


Sign in / Sign up

Export Citation Format

Share Document