Theoretical investigation on the photoelectrochemical anticorrosion mechanism of SnO2–TiO2nanotube

2019 ◽  
Vol 18 (03) ◽  
pp. 1950016 ◽  
Author(s):  
Yang Meng ◽  
Jianjun Zhang ◽  
Zhunzhun Wang ◽  
Jin-Xia Liang ◽  
Chun Zhu

In this work, the calculated electron density difference, Bader charge analysis and the density of states (DOS) of SnO2–TiO2-nanotubes (NTs) indicate that the electrons are transferred from the Ti atoms of TiO2into the O atoms of (SnO[Formula: see text] in SnO2–TiO2-NTs and the supported (SnO[Formula: see text] cluster acts as the role of storage for photogenerated electrons excited from TiO2-NTs, which is in good agreement with experimental results that the SnO2–TiO2-NTs composite films have higher photocurrent density for photocathodic protection of 304 stainless steel (304SS). The theoretical investigations provide a plausible explanation for the photoelectrochemical anticorrosion mechanism of SnO2–TiO2-NTs using periodic density functional theory (DFT).

2011 ◽  
Vol 90-93 ◽  
pp. 1264-1271
Author(s):  
Xiao Feng Li ◽  
Jun Yi Du

The ground structure, elastic and electronic properties of several phases of NbN are determined based on ab initio total-energy calculations within the framework of density functional theory. Among the five crystallographic structures that have been investigated, the hexagonal phases have been found to be more stable than the cubic ones. The calculated equilibrium structural parameters are in good agreement with the available experimental results. The elastic constants of five structures in NbN are calculated, which are in consistent with the obtained theoretical and experimental data. The corresponding Debye temperature and elastic ansitropies are also obtained. The Debye temperature of NbN in various structures consistent with available experimental and theoretical data, in which the Debye temperature of δ-NbN is highest. The anisotropies of ZB-NbN, NaCl-NbN, CsCl-NbN gradually increases. For hexagonal structure, the anisotropies of ε-NbN are stronger than that of δ-NbN. The electronic structures of NbN under pressure are investigated. It is found that NbN have metallization and the hybridizations of atoms in NbN under pressure become stronger.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ioan Stroia ◽  
Ionuţ -Tudor Moraru ◽  
Maria Miclăuş ◽  
Ion Grosu ◽  
Claudia Lar ◽  
...  

In the context of helical chirality, bridging of biphenyl units leads to banister-type compounds and the stability of the resulted atropisomers may increase dramatically if suitable changes are performed in the linker unit that coils around the biphenyl moiety. A rigorous density functional theory (DFT) study was conducted for macrocycles containing rigid oxime ether segments connected to the biphenyl backbone in order to determine how the rotation barriers are influenced by the presence of either a flexible oligoethyleneoxide or a more rigid m–xylylene component in the macrocycle. The calculated values for the racemization barrier were in good agreement with those obtained experimentally and confirm the benefit of introducing a more rigid unit in the macrocycle on the stability of atropisomers. Solid-state data were obtained and computed data were used to assess the contribution brought by supramolecular associations observed in the lattice to the stabilization of the crystal structure. Beside introducing rigidity in the linker, complexation of flexible macrocycles with alkali metal ions is also contributing to the stability of atropisomers, leading to values for the racemization barrier matching that of the rigid macrocycle. Using diethylammonium cation as guest for the macrocycle, a spectacular increase in the barrier to rotation was observed for the resulted pseudo[2]rotaxane.


2021 ◽  
Author(s):  
Marius Ousmanou Bouba ◽  
Fridolin Tchangnwa Nya ◽  
Christine Yvette Ngui ◽  
Jean Marie Ndjaka

Abstract We have investigated the structures, electronic properties, hole and electron mobilities of fluorinated and chlorinated nanographene of benzo[o]bistriphenyleno[2,1,12,11-efghi:2',1',12',11'-uvabc]ovalene (TCHG) molecules, us- ing the density functional theory (DFT) and Markus-Hush charge transfer theory. The calculated geometric parameters and the IR spectrum for chlorinated TCHG are in good agreement with the experimental data. Our theoretical investigations have shown that fluorination and chlorination significantly reduce the bandgap energy of TCHG. The obtained adiabatic electron affinities (AEAs) values are 2.76 and 2.93 eV respectively, indicating the air-stable materials. The calculation of charge carriers mobilities in chlorinated dimer shows that the mobility of the electrons is ten times that of the holes, suggesting an n-type behavior. We have shown that the fluorination and chlorination of TCHG are promising pathways for the design of new materials useful in optoelectronics


Author(s):  
K. Maithili ◽  
Prakasha Shetty ◽  
P. Preethi Kumari ◽  
Sneha Kagatikar

AbstractThe inhibition action of a Mannich base, N-(1- morpholinobenzyl) semicarbazide (MBS), was examined on AA6061 corrosion in 0.5 M HCl solution at varied temperatures (303 to 323 K). The testing was performed by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. The inhibition performance of MBS was improved with an increment in its concentration (0.01–2.56 mM) and temperature rise (303 to 323 K). MBS showed a mixed inhibitor behavior at all concentrations and temperatures range studied. MBS displayed the highest inhibition efficiency of 98% at 2.56 mM and 323 K. Inhibitor followed mixed adsorption on the alloy surface and obeyed the Langmuir isotherm model. The results obtained from the EIS were in good agreement with that of the PDP results. An appropriate mechanism was proposed for the corrosion inhibition of AA6061. Inhibitor molecules adsorption on alloy surface was confirmed by surface morphology testing by a scanning electron microscope (SEM) and atomic force microscope (AFM). Theoretical studies using density-functional theory (DFT) confirmed the experimental results.


2021 ◽  
Author(s):  
Marius Ousmanou Bouba ◽  
Fridolin Tchangnwa Nya ◽  
Alhadji Malloum ◽  
Jeanet Conradie ◽  
Jean Marie Ndjaka

Abstract We have investigated the structures, electronic properties, hole and electron mobilities of perfluorinated, perchlorinated and percyanated coronene molecules, using the density functional theory (DFT) at the B3LYP-D3/6-311++G(d,p) and ωB97XD/6-311++G(d,p) levels and Markus-Hush charge transfer theory. The calculated geometric parameters for coronene and perchlorocoronene are in good agreement with the experimental data. Our theoretical investigations have shown B3LYP-D3 functional is suitable to well define vibrational assignments for studied molecules. We have shown that the per-halogenation and per-cyanation of coronene increases the adiabatic electron affinities (AEAs) and reduces the LUMO levels and the hole mobilities thus indicating an ambipolar behavior and air-stable material. We have shown that the percyanation of coronene is a promising pathway for the design of new materials useful in optoelectronics.


2020 ◽  
Author(s):  
Tulin Okbinoglu ◽  
Pierre Kennepohl

Molecules containing sulfur-nitrogen bonds, like sulfonamides, have long been of interest due to their many uses and chemical properties. Understanding the factors that cause sulfonamide reactivity is important, yet their continues to be controversy regarding the relevance of S-N π bonding in describing these species. In this paper, we use sulfur K-edge x-ray absorption spectroscopy (XAS) in conjunction with density functional theory (DFT) to explore the role of S<sub>3p</sub> contributions to π-bonding in sulfonamides, sulfinamides and sulfenamides. We explore the nature of electron distribution of the sulfur atom and its nearest neighbors and extend the scope to explore the effects on rotational barriers along the sulfur-nitrogen axis. The experimental XAS data together with TD-DFT calculations confirm that sulfonamides, and the other sulfinated amides in this series, have essentially no S-N π bonding involving S<sub>3p</sub> contributions and that electron repulsion and is the dominant force that affect rotational barriers.


2018 ◽  
Vol 15 (2) ◽  
pp. 286-296 ◽  
Author(s):  
Mohamed K. Awad ◽  
Mahmoud F. Abdel-Aal ◽  
Faten M. Atlam ◽  
Hend A. Hekal

Aim and Objective: Synthesis of new .-aminophosphonates containing quinazoline moiety through Kabachnik-Fields reaction in the presence of copper triflate catalyst [32], followed by studying their antimicrobial activities and in vitro anticancer activities against liver carcinoma cell line (HepG2) with the hope that new anticancer agents could be developed. Also, the quantum chemical calculations are performed using density functional theory (DFT) to study the effect of the changes of molecular and electronic structures on the biological activity of the investigated compounds. Materials and Method: The structures of the synthesized compounds are confirmed by FT-IR, 1H NMR, 13C NMR, 31P NMR and MS spectral data. The synthesized compounds show significant antimicrobial and also remarkable cytotoxicity anticancer activities against liver carcinoma cell line (HepG2). Density functional theory (DFT) was performed to study the effect of the molecular and electronic structure changes on the biological activity. Results: It was found that the electronic structure of the substituents affects on the reaction yield. The electron withdrawing substituent, NO2 group 3b, on the aromatic aldehydes gave a good yield more than the electron donating substituent, OH group 3c. The electron deficient on the carbon atom of the aldehydic group may increase the interaction of the Lewis acid (Cu(OTf)2) and the Lewis base (imine nitrogen), and accordingly, facilitate the formation of imine easily, which is attacked by the nucleophilic phosphite species to give the α- aminophosphonates. Conclusion: The newly synthesized compounds exhibit a remarkable inhibition of the growth of Grampositive, Gram-negative bacteria and fungi at low concentrations. The cytotoxicity of the synthesized compounds showed a significant cytotoxicity against the liver cancer cell line (HepG 2). Also, it was shown from the quantum chemical calculations that the electron-withdrawing substituent increases the biological activity of the α-aminophosphonates more than the electron donating group which was in a good agreement with the experimental results. Also, a good agreement between the experimental FT-IR and the calculated one was found.


2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1032
Author(s):  
Anirban Naskar ◽  
Rabi Khanal ◽  
Samrat Choudhury

The electronic structure of a series perovskites ABX3 (A = Cs; B = Ca, Sr, and Ba; X = F, Cl, Br, and I) in the presence and absence of antisite defect XB were systematically investigated based on density-functional-theory calculations. Both cubic and orthorhombic perovskites were considered. It was observed that for certain perovskite compositions and crystal structure, presence of antisite point defect leads to the formation of electronic defect state(s) within the band gap. We showed that both the type of electronic defect states and their individual energy level location within the bandgap can be predicted based on easily available intrinsic properties of the constituent elements, such as the bond-dissociation energy of the B–X and X–X bond, the X–X covalent bond length, and the atomic size of halide (X) as well as structural characteristic such as B–X–B bond angle. Overall, this work provides a science-based generic principle to design the electronic states within the band structure in Cs-based perovskites in presence of point defects such as antisite defect.


Sign in / Sign up

Export Citation Format

Share Document