Feature selection for cross-scene hyperspectral image classification using cross-domain ReliefF

Author(s):  
Minchao Ye ◽  
Yongqiu Xu ◽  
Chenxi Ji ◽  
Hong Chen ◽  
Huijuan Lu ◽  
...  

Hyperspectral images (HSIs) have hundreds of narrow and adjacent spectral bands, which will result in feature redundancy, decreasing the classification accuracy. Feature (band) selection helps to remove the noisy or redundant features. Most traditional feature selection algorithms can be only performed on a single HSI scene. However, appearance of massive HSIs has placed a need for joint feature selection across different HSI scenes. Cross-scene feature selection is not a simple problem, since spectral shift exists between different HSI scenes, even though the scenes are captured by the same sensor. The spectral shift makes traditional single-dataset-based feature selection algorithms no longer applicable. To solve this problem, we extend the traditional ReliefF to a cross-domain version, namely, cross-domain ReliefF (CDRF). The proposed method can make full use of both source and target domains and increase the similarity of samples belonging to the same class in both domains. In the cross-scene classification problem, it is necessary to consider the class-separability of spectral features and the consistency of features between different scenes. The CDRF takes into account these two factors using a cross-domain updating rule of the feature weights. Experimental results on two cross-scene HSI datasets show the superiority of the proposed CDRF in cross-scene feature selection problems.

2012 ◽  
Vol 500 ◽  
pp. 799-805 ◽  
Author(s):  
Farhad Samadzadegan ◽  
Shahin Rahmatollahi Namin ◽  
Mohammad Ali Rajabi

The great number of captured near spectral bands in hyperspectral images causes the curse of dimensionality problem and results in low classification accuracy. The feature selection algorithms try to overcome this problem by limiting the input space dimensions of classification for hyperspectral images. In this paper, immune clonal selection optimization algorithm is used for feature selection. Also one of the fastest Artificial Immune classification algorithms is used to compute fitness function of the feature selection. The comparison of the feature selection results with genetic algorithm shows the clonal selection’s higher performance to solve selection of features.


Author(s):  
A. Le Bris ◽  
N. Chehata ◽  
X. Briottet ◽  
N. Paparoditis

Spectral optimization consists in identifying the most relevant band subset for a specific application. It is a way to reduce hyperspectral data huge dimensionality and can be applied to design specific superspectral sensors dedicated to specific land cover applications. Spectral optimization includes both band selection and band extraction. On the one hand, band selection aims at selecting an optimal band subset (according to a relevance criterion) among the bands of a hyperspectral data set, using automatic feature selection algorithms. On the other hand, band extraction defines the most relevant spectral bands optimizing both their position along the spectrum and their width. The approach presented in this paper first builds a hierarchy of groups of adjacent bands, according to a relevance criterion to decide which adjacent bands must be merged. Then, band selection is performed at the different levels of this hierarchy. Two approaches were proposed to achieve this task : a greedy one and a new adaptation of an incremental feature selection algorithm to this hierarchy of merged bands.


Author(s):  
Ning Gui ◽  
Danni Ge ◽  
Ziyin Hu

As an effective data preprocessing step, feature selection has shown its effectiveness to prepare high-dimensional data for many machine learning tasks. The proliferation of high di-mension and huge volume big data, however, has brought major challenges, e.g. computation complexity and stability on noisy data, upon existing feature-selection techniques. This paper introduces a novel neural network-based feature selection architecture, dubbed Attention-based Feature Selec-tion (AFS). AFS consists of two detachable modules: an at-tention module for feature weight generation and a learning module for the problem modeling. The attention module for-mulates correlation problem among features and supervision target into a binary classification problem, supported by a shallow attention net for each feature. Feature weights are generated based on the distribution of respective feature selec-tion patterns adjusted by backpropagation during the training process. The detachable structure allows existing off-the-shelf models to be directly reused, which allows for much less training time, demands for the training data and requirements for expertise. A hybrid initialization method is also introduced to boost the selection accuracy for datasets without enough samples for feature weight generation. Experimental results show that AFS achieves the best accuracy and stability in comparison to several state-of-art feature selection algorithms upon both MNIST, noisy MNIST and several datasets with small samples.


Author(s):  
Iwan Syarif

Classification problem especially for high dimensional datasets have attracted many researchers in order to find efficient approaches to address them. However, the classification problem has become very complicatedespecially when the number of possible different combinations of variables is so high. In this research, we evaluate the performance of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) as feature selection algorithms when applied to high dimensional datasets.Our experiments show that in terms of dimensionality reduction, PSO is much better than GA. PSO has successfully reduced the number of attributes of 8 datasets to 13.47% on average while GA is only 31.36% on average. In terms of classification performance, GA is slightly better than PSO. GA‐ reduced datasets have better performance than their original ones on 5 of 8 datasets while PSO is only 3 of 8 datasets.Keywords: feature selection, dimensionality reduction, Genetic Algorithm (GA), Particle Swarm Optmization (PSO).


Author(s):  
Manpreet Kaur ◽  
Chamkaur Singh

Educational Data Mining (EDM) is an emerging research area help the educational institutions to improve the performance of their students. Feature Selection (FS) algorithms remove irrelevant data from the educational dataset and hence increases the performance of classifiers used in EDM techniques. This paper present an analysis of the performance of feature selection algorithms on student data set. .In this papers the different problems that are defined in problem formulation. All these problems are resolved in future. Furthermore the paper is an attempt of playing a positive role in the improvement of education quality, as well as guides new researchers in making academic intervention.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3995 ◽  
Author(s):  
Ning Liu ◽  
Ruomei Zhao ◽  
Lang Qiao ◽  
Yao Zhang ◽  
Minzan Li ◽  
...  

Potato is the world’s fourth-largest food crop, following rice, wheat, and maize. Unlike other crops, it is a typical root crop with a special growth cycle pattern and underground tubers, which makes it harder to track the progress of potatoes and to provide automated crop management. The classification of growth stages has great significance for right time management in the potato field. This paper aims to study how to classify the growth stage of potato crops accurately on the basis of spectroscopy technology. To develop a classification model that monitors the growth stage of potato crops, the field experiments were conducted at the tillering stage (S1), tuber formation stage (S2), tuber bulking stage (S3), and tuber maturation stage (S4), respectively. After spectral data pre-processing, the dynamic changes in chlorophyll content and spectral response during growth were analyzed. A classification model was then established using the support vector machine (SVM) algorithm based on spectral bands and the wavelet coefficients obtained from the continuous wavelet transform (CWT) of reflectance spectra. The spectral variables, which include sensitive spectral bands and feature wavelet coefficients, were optimized using three selection algorithms to improve the classification performance of the model. The selection algorithms include correlation analysis (CA), the successive projection algorithm (SPA), and the random frog (RF) algorithm. The model results were used to compare the performance of various methods. The CWT-SPA-SVM model exhibited excellent performance. The classification accuracies on the training set (Atrain) and the test set (Atest) were respectively 100% and 97.37%, demonstrating the good classification capability of the model. The difference between the Atrain and accuracy of cross-validation (Acv) was 1%, which showed that the model has good stability. Therefore, the CWT-SPA-SVM model can be used to classify the growth stages of potato crops accurately. This study provides an important support method for the classification of growth stages in the potato field.


2021 ◽  
Vol 11 (15) ◽  
pp. 6983
Author(s):  
Maritza Mera-Gaona ◽  
Diego M. López ◽  
Rubiel Vargas-Canas

Identifying relevant data to support the automatic analysis of electroencephalograms (EEG) has become a challenge. Although there are many proposals to support the diagnosis of neurological pathologies, the current challenge is to improve the reliability of the tools to classify or detect abnormalities. In this study, we used an ensemble feature selection approach to integrate the advantages of several feature selection algorithms to improve the identification of the characteristics with high power of differentiation in the classification of normal and abnormal EEG signals. Discrimination was evaluated using several classifiers, i.e., decision tree, logistic regression, random forest, and Support Vecctor Machine (SVM); furthermore, performance was assessed by accuracy, specificity, and sensitivity metrics. The evaluation results showed that Ensemble Feature Selection (EFS) is a helpful tool to select relevant features from the EEGs. Thus, the stability calculated for the EFS method proposed was almost perfect in most of the cases evaluated. Moreover, the assessed classifiers evidenced that the models improved in performance when trained with the EFS approach’s features. In addition, the classifier of epileptiform events built using the features selected by the EFS method achieved an accuracy, sensitivity, and specificity of 97.64%, 96.78%, and 97.95%, respectively; finally, the stability of the EFS method evidenced a reliable subset of relevant features. Moreover, the accuracy, sensitivity, and specificity of the EEG detector are equal to or greater than the values reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document