CONFORMATIONAL DYNAMICS OF HIV-1 PROTEASE: A COMPARATIVE MOLECULAR DYNAMICS SIMULATION STUDY WITH MULTIPLE AMBER FORCE FIELDS

2012 ◽  
Vol 10 (06) ◽  
pp. 1250018 ◽  
Author(s):  
BISWA RANJAN MEHER ◽  
MATTAPARTHI VENKATA SATISH KUMAR ◽  
SMRITI SHARMA ◽  
PRADIPTA BANDYOPADHYAY

Flap dynamics of HIV-1 protease (HIV-pr) controls the entry of inhibitors and substrates to the active site. Dynamical models from previous simulations are not all consistent with each other and not all are supported by the NMR results. In the present work, the effect of force field on the dynamics of HIV-pr is investigated by MD simulations using three AMBER force fields ff99, ff99SB, and ff03. The generalized order parameters for amide backbone are calculated from the three force fields and compared with the NMR S2 values. We found that the ff99SB and ff03 force field calculated order parameters agree reasonably well with the NMR S2 values, whereas ff99 calculated values deviate most from the NMR order parameters. Stereochemical geometry of protein models from each force field also agrees well with the remarks from NMR S2 values. However, between ff99SB and ff03, there are several differences, most notably in the loop regions. It is found that these loops are, in general, more flexible in the ff03 force field. This results in a larger active site cavity in the simulation with the ff03 force field. The effect of this difference in computer-aided drug design against flexible receptors is discussed.

2019 ◽  
Vol 20 (2) ◽  
pp. 260 ◽  
Author(s):  
Yi Li ◽  
Lei Deng ◽  
Li-Quan Yang ◽  
Peng Sang ◽  
Shu-Qun Liu

Human immunodeficiency virus type-1 (HIV-1) infection is triggered by its envelope (Env) glycoprotein gp120 binding to the host-cell receptor CD4. Although structures of Env/gp120 in the liganded state are known, detailed information about dynamics of the liganded gp120 has remained elusive. Two structural models, the CD4-free gp120 and the gp120-CD4 complex, were subjected to µs-scale multiple-replica molecular dynamics (MD) simulations to probe the effects of CD4 binding on the conformational dynamics, molecular motions, and thermodynamics of gp120. Comparative analyses of MD trajectories in terms of structural deviation and conformational flexibility reveal that CD4 binding effectively suppresses the overall conformational fluctuations of gp120. Despite the largest fluctuation amplitude of the V1/V2 region in both forms of gp120, the presence of CD4 prevents it from approaching the gp120 core. Comparison of the constructed free energy landscapes (FELs) shows that CD4 binding reduces the conformational entropy and conformational diversity while enhancing the stability of gp120. Further comparison of the representative structures extracted from free energy basins/minima of FELs reveals that CD4 binding weakens the reorientation ability of V1/V2 and hence hinders gp120 from transitioning out of the liganded state to the unliganded state. Therefore, locking gp120 conformation via restraining V1/V2 reorientation with small molecules seems to be a promising strategy to control HIV-1 infection. Our computer simulation results support the conformational selection mechanism for CD4 binding to gp120 and facilitate the understanding of HIV-1 immune evasion mechanisms.


2004 ◽  
Vol 78 (6) ◽  
pp. 3123-3132 ◽  
Author(s):  
Bradley C. Logsdon ◽  
John F. Vickrey ◽  
Philip Martin ◽  
Gheorghe Proteasa ◽  
Jay I. Koepke ◽  
...  

ABSTRACT The goal of this study was to use X-ray crystallography to investigate the structural basis of resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors. We overexpressed, purified, and crystallized a multidrug-resistant (MDR) HIV-1 protease enzyme derived from a patient failing on several protease inhibitor-containing regimens. This HIV-1 variant contained codon mutations at positions 10, 36, 46, 54, 63, 71, 82, 84, and 90 that confer drug resistance to protease inhibitors. The 1.8-angstrom (Å) crystal structure of this MDR patient isolate reveals an expanded active-site cavity. The active-site expansion includes position 82 and 84 mutations due to the alterations in the amino acid side chains from longer to shorter (e.g., V82A and I84V). The MDR isolate 769 protease “flaps” stay open wider, and the difference in the flap tip distances in the MDR 769 variant is 12 Å. The MDR 769 protease crystal complexes with lopinavir and DMP450 reveal completely different binding modes. The network of interactions between the ligands and the MDR 769 protease is completely different from that seen with the wild-type protease-ligand complexes. The water molecule-forming hydrogen bonds bridging between the two flaps and either the substrate or the peptide-based inhibitor are lacking in the MDR 769 clinical isolate. The S1, S1′, S3, and S3′ pockets show expansion and conformational change. Surface plasmon resonance measurements with the MDR 769 protease indicate higher k off rates, resulting in a change of binding affinity. Surface plasmon resonance measurements provide k on and k off data (Kd = k off/k on) to measure binding of the multidrug-resistant protease to various ligands. This MDR 769 protease represents a new antiviral target, presenting the possibility of designing novel inhibitors with activity against the open and expanded protease forms.


2007 ◽  
Vol 129 (3) ◽  
pp. 474-475 ◽  
Author(s):  
Krishna Pratap Ravindranathan ◽  
Emilio Gallicchio ◽  
Ann E. McDermott ◽  
Ronald M. Levy

2022 ◽  
Author(s):  
Petr Jurecka ◽  
Marie Zgarbova ◽  
Filip Cerny ◽  
Jan Salomon

When DNA interacts with a protein, its structure often undergoes significant conformational adaptation. Perhaps the most common is the transition from canonical B-DNA towards the A-DNA form, which is not a two-state, but rather a continuous transition. The A- and B- forms differ mainly in sugar pucker P (north/south) and glycosidic torsion χ (high-anti/anti). The combination of A-like P and B-like χ (and vice versa) represents the nature of the intermediate states lying between the pure A- and B- forms. In this work, we study how the A/B equilibrium and in particular the A/B intermediate states, which are known to be over-represented at protein-DNA interfaces, are modeled by current AMBER force fields. Eight protein-DNA complexes and their naked (unbound) DNAs were simulated with OL15 and bsc1 force fields as well as an experimental combination OL15χOL3. We found that while the geometries of the A-like intermediate states in the molecular dynamics (MD) simulations agree well with the native X-ray geometries found in the protein-DNA complexes, their populations (stabilities) are significantly underestimated. Different force fields predict different propensities for A-like states growing in the order OL15 < bsc1 < OL15χOL3, but the overall populations of the A-like form are too low in all of them. Interestingly, the force fields seem to predict the correct sequence-dependent A-form propensity, as they predict larger populations of the A-like form in naked (unbound) DNA in those steps that acquire A-like conformations in protein-DNA complexes. The instability of A-like geometries in current force fields may significantly alter the geometry of the simulated protein-DNA complex, destabilize the binding motif, and reduce the binding energy, suggesting that refinement is needed to improve description of protein-DNA interactions in AMBER force fields.


2020 ◽  
Author(s):  
Suman Samantray ◽  
Feng Yin ◽  
Batuhan Kav ◽  
Birgit Strodel

AbstractThe progress towards understanding the molecular basis of Alzheimers’s disease is strongly connected to elucidating the early aggregation events of the amyloid-β (Aβ) peptide. Molecular dynamics (MD) simulations provide a viable technique to study the aggregation of Aβ into oligomers with high spatial and temporal resolution. However, the results of an MD simulation can only be as good as the underlying force field. A recent study by our group showed that none of the force fields tested can distinguish between aggregation-prone and non-aggregating peptide sequences, producing the same and in most cases too fast aggregation kinetics for all peptides. Since then, new force fields specially designed for intrinsically disordered proteins such as Aβ were developed. Here, we assess the applicability of these new force fields to studying peptide aggregation using the Aβ16−22 peptide and mutations of it as test case. We investigate their performance in modeling the monomeric state, the aggregation into oligomers, and the stability of the aggregation end product, i.e., the fibrillar state. A main finding is that changing the force field has a stronger effect on the simulated aggregation pathway than changing the peptide sequence. Also the new force fields are not able to reproduce the experimental aggregation propensity order of the peptides. Dissecting the various energy contributions shows that AMBER99SB-disp overestimates the interactions between the peptides and water, thereby inhibiting peptide aggregation. More promising results are obtained with CHARMM36m and especially its version with increased protein–water interactions. It is thus recommended to use this force field for peptide aggregation simulations and base future reparameterizations on it.


2019 ◽  
Author(s):  
Anam Arooj ◽  
Muhammad Tariq Pervez ◽  
Zeeshan Gillani ◽  
Tahir Ali Chohan ◽  
M. Tayyab Chaudhry ◽  
...  

AbstractCYP11B2gene is located over the upper layer of the kidney. It produces aldosterone synthase enzyme and thereby has an essential role to balance salt and mineral level in the body. A mutation in this gene can deregulate the production of aldosterone hormone in the body which may lead to many diseases including hypertension and cardiac diseases. To control the excess production of this aldosterone an inhibitor “Fadrozole” is being used which is associated with an active site cavity of CYP11B2. This study has been divided into two parts. In the first part, the four computational tools (SIFT, Polyphen-2, I-Mutant, ConSurf) were used to identify 29 deleterious SNPs out of 1600CYP11B2SNPs. In the second part, five residues (R448G, R141P, W260R, F130S, and F445S) were identified in the active site cavity (out of 29 deleterious CYP11B2 SNPs) at the distance of 5A°. Binding free energy calculation as well as Dynamics simulation techniques were applied to determine the effect of these mutations on the CYP11B2-Fadrozole compound. The results showed thatFadrozolebinding with CYP11B2 became stronger which proved the efficiency of this drug inhibitor with these highly damaging mutations. Our study will be useful for selecting the high priority CYP11B2 mutations, which could be further, investigated in this gene-associated study, for better understanding of the structural and functional aspects of the observed (CYP11B2) protein.


2018 ◽  
Author(s):  
Elena Papaleo ◽  
Carlo Camilloni ◽  
Kaare Teilum ◽  
Michele Vendruscolo ◽  
Kresten Lindorff-Larsen

ABSTRACTMany proteins display complex dynamical properties that are often intimately linked to their biological functions. As the native state of a protein is best described as an ensemble of confor-mations, it is important to be able to generate models of native state ensembles with high accuracy. Due to limitations in sampling efficiency and force field accuracy it is, however, challenging to obtain accurate ensembles of protein conformations by the use of molecular simulations alone. Here we show that dynamic ensemble refinement, which combines an accurate atomistic force field with commonly available nuclear magnetic resonance (NMR) chemical shifts and NOEs, can provide a detailed and accurate description of the conformational ensemble of the native state of a highly dynamic protein. As both NOEs and chemical shifts are averaged on timescales up to milliseconds, the resulting ensembles reflect the structural heterogeneity that goes beyond that probed e.g. by NMR relaxation order parameters. We selected the small protein domain NCBD as object of our study since this protein, which has been characterized experimentally in substantial detail, displays a rich and complex dynamical behaviour. In particular, the protein has been described as having a molten-globule like structure, but with a relatively rigid core. Our approach allowed us to describe the conformational dynamics of NCBD in solution, and to probe the structural heterogeneity resulting from both short- and long-time-scale dynamics by the calculation of order parameters on different time scales. These results illustrate the usefulness of our approach since they show that NCBD is rather rigid on the nanosecond timescale, but interconverts within a broader ensemble on longer timescales, thus enabling the derivation of a coherent set of conclusions from various NMR experiments on this protein, which could otherwise appear in contradiction with each other.


RSC Advances ◽  
2016 ◽  
Vol 6 (64) ◽  
pp. 59313-59318 ◽  
Author(s):  
Jinping Zhang ◽  
Yubing Si ◽  
Can Leng ◽  
Baocheng Yang

The heating and low temperature thermite reactions of the Al/SiO2 sandwich nanostructure are investigated by MD simulations in combination with the reactive force field. The results show that the melting temperature of this structure is ∼1400 K.


Sign in / Sign up

Export Citation Format

Share Document