Application of ODE techniques to spherical gravitational collapse: Methods and results

2016 ◽  
Vol 13 (05) ◽  
pp. 1630005
Author(s):  
Roberto Giambò ◽  
Fabio Giannoni ◽  
Giulio Magli

The final state of spherical gravitational collapse can be analyzed applying to the geodesic equations governing the behavior of light rays near the singularity relatively simple but powerful techniques of nonlinear ordinary differential equations. In this way, explicit use of exact solutions of Einstein’s field equations is not necessary, and results can be obtained for wide equations of state of the collapsing matter field.

2019 ◽  
Vol 8 (1) ◽  
pp. 157-163 ◽  
Author(s):  
K. Hosseini ◽  
A. Bekir ◽  
F. Rabiei

AbstractThe current work deals with the fractional forms of EW and modified EW equations in the conformable sense and their exact solutions. In this respect, by utilizing a traveling wave transformation, the governing space-time fractional models are converted to the nonlinear ordinary differential equations (NLODEs); and then, the resulting NLODEs are solved through an effective method called the exp(−ϕ(ϵ))-expansion method. As a consequence, a number of exact solutions to the fractional forms of EW and modified EW equations are generated.


2004 ◽  
Vol 59 (7-8) ◽  
pp. 443-454 ◽  
Author(s):  
Nikolai A. Kudryashov

A new problem is studied, that is to find nonlinear differential equations with special solutions expressed via the Weierstrass function. A method is discussed to construct nonlinear ordinary differential equations with exact solutions. The main step of our method is the assumption that nonlinear differential equations have exact solutions which are general solution of the simplest integrable equation. We use the Weierstrass elliptic equation as building block to find a number of nonlinear differential equations with exact solutions. Nonlinear differential equations of the second, third and fourth order with special solutionsexpressed via theWeierstrass function are given. - PACS: 02.30.Hq (Ordinary differential equations)


2015 ◽  
Vol 18 (1) ◽  
pp. 730-753 ◽  
Author(s):  
H. Temimi ◽  
A. R. Ansari

We present a quasi-linear iterative method for solving a system of $m$-nonlinear coupled differential equations. We provide an error analysis of the method to study its convergence criteria. In order to show the efficiency of the method, we consider some computational examples of this class of problem. These examples validate the accuracy of the method and show that it gives results which are convergent to the exact solutions. We prove that the method is accurate, fast and has a reasonable rate of convergence by computing some local and global error indicators.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jing Chen ◽  
Ling Liu ◽  
Li Liu

The separation transformation method is extended to then+1-dimensional Klein-Gordon-Zakharov equation describing the interaction of the Langmuir wave and the ion acoustic wave in plasma. We first reduce then+1-dimensional Klein-Gordon-Zakharov equation to a set of partial differential equations and two nonlinear ordinary differential equations of the separation variables. Then the general solutions of the set of partial differential equations are given and the two nonlinear ordinary differential equations are solved by extendedF-expansion method. Finally, some new exact solutions of then+1-dimensional Klein-Gordon-Zakharov equation are proposed explicitly by combining the separation transformation with the exact solutions of the separation variables. It is shown that, for the case ofn≥2, there is an arbitrary function in every exact solution, which may reveal more nontrivial nonlinear structures in the high-dimensional Klein-Gordon-Zakharov equation.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 478-482 ◽  
Author(s):  
Melike Kaplan ◽  
Murat Koparan ◽  
Ahmet Bekir

AbstractIn this work, we have considered the modified simple equation (MSE) method for obtaining exact solutions of nonlinear fractional-order differential equations. The space-time fractional equal width (EW) and the modified equal width (mEW) equation are considered for illustrating the effectiveness of the algorithm. It has been observed that all exact solutions obtained in this paper verify the nonlinear ordinary differential equations which was obtained from nonlinear fractional-order differential equations under the terms of wave transformation relationship. The obtained results are shown graphically.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 74-88 ◽  
Author(s):  
Tanveer Sajid ◽  
Muhammad Sagheer ◽  
Shafqat Hussain ◽  
Faisal Shahzad

AbstractThe double-diffusive tangent hyperbolic nanofluid containing motile gyrotactic microorganisms and magnetohydrodynamics past a stretching sheet is examined. By adopting the scaling group of transformation, the governing equations of motion are transformed into a system of nonlinear ordinary differential equations. The Keller box scheme, a finite difference method, has been employed for the solution of the nonlinear ordinary differential equations. The behaviour of the working fluid against various parameters of physical nature has been analyzed through graphs and tables. The behaviour of different physical quantities of interest such as heat transfer rate, density of the motile gyrotactic microorganisms and mass transfer rate is also discussed in the form of tables and graphs. It is found that the modified Dufour parameter has an increasing effect on the temperature profile. The solute profile is observed to decay as a result of an augmentation in the nanofluid Lewis number.


2016 ◽  
Vol 9 (4) ◽  
pp. 619-639 ◽  
Author(s):  
Zhong-Qing Wang ◽  
Jun Mu

AbstractWe introduce a multiple interval Chebyshev-Gauss-Lobatto spectral collocation method for the initial value problems of the nonlinear ordinary differential equations (ODES). This method is easy to implement and possesses the high order accuracy. In addition, it is very stable and suitable for long time calculations. We also obtain thehp-version bound on the numerical error of the multiple interval collocation method underH1-norm. Numerical experiments confirm the theoretical expectations.


Sign in / Sign up

Export Citation Format

Share Document