Photodynamic inactivation of selected bovine viruses by isomeric cationic tetra-platinated porphyrins

2019 ◽  
Vol 23 (09) ◽  
pp. 1041-1046 ◽  
Author(s):  
Giovana Basso ◽  
Juliana F. Cargnelutti ◽  
Amanda L. Oliveira ◽  
Thiago V. Acunha ◽  
Rudi Weiblen ◽  
...  

Porphyrin-based photodynamic processes have been used for the inactivation of microorganisms and treatment of tumors. The virucidal activity of porphyrins 3-PtTPyP and 4-PtTPyP was investigated against bovine viruses representative of the main structural groups (enveloped/non-enveloped, DNA/RNA: BVDV, BoHV-1, BAV and BEV), and against two epitheliotropic viruses (VSV and VACV). Viral suspensions were incubated at 0.91 [Formula: see text]mol [Formula: see text] L[Formula: see text] and exposed to a white-light LED array source (25 mW [Formula: see text] cm[Formula: see text]; 90 J [Formula: see text] cm[Formula: see text] for 0, 15, 30 and 60 min followed by determination of the remaining virus titers. Porphyrin 3-PtTPyP reduced almost 6 log of VSV and 3.5 log of BVDV titers after 15 min and complete virus photoinactivation was achieved after 30 min. 4-PtTPyP at 0.91 [Formula: see text]mol [Formula: see text] L[Formula: see text] produced reduction of titers of all enveloped virus depending on the time of light irradiation. No virucidal activity of any of the porphyrins was observed for non-enveloped viruses and these results showed the potential of porphyrins to inactivate viruses in premises.

Author(s):  
Millard M. Judy ◽  
Joseph T. Newman ◽  
James L. Matthews ◽  
Franklin Sogandares-Bernal ◽  
Helen Skiles ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 153
Author(s):  
Georgios Koukouvinos ◽  
Chrysoula-Evangelia Karachaliou ◽  
Ioannis Raptis ◽  
Panagiota Petrou ◽  
Evangelia Livaniou ◽  
...  

Carbendazim is a systemic benzimidazole-type fungicide with broad-spectrum activity against fungi that undermine food products safety and quality. Despite its effectiveness, carbendazim constitutes a major environmental pollutant, being hazardous to both humans and animals. Therefore, fast and reliable determination of carbendazim levels in water, soil, and food samples is of high importance for both food industry and public health. Herein, an optical biosensor based on white light reflectance spectroscopy (WLRS) for fast and sensitive determination of carbendazim in fruit juices is presented. The transducer is a Si/SiO2 chip functionalized with a benzimidazole conjugate, and determination is based on a competitive immunoassay format. Thus, for the assay, a mixture of an in-house developed rabbit polyclonal anti-carbendazim antibody with the standards or samples is pumped over the chip, followed by biotinylated secondary antibody and streptavidin. The WLRS platform allows for real-time monitoring of biomolecular interactions carried out onto the Si/SiO2 chip by transforming the shift in the reflected interference spectrum caused by the immunoreaction to effective biomolecular adlayer thickness. The sensor is able to detect 20 ng/mL of carbendazim in fruit juices with high accuracy and precision (intra- and inter-assay CVs ≤ 6.9% and ≤9.4%, respectively) in less than 30 min, applying a simple sample treatment that alleviates any “matrix-effect” on the assay results and a 60 min preincubation step for improving assay sensitivity. Excellent analytical characteristics and short analysis time along with its small size render the proposed WLRS immunosensor ideal for future on-the-spot determination of carbendazim in food and environmental samples.


2021 ◽  
Author(s):  
Alessandra Capezzone de Joannon ◽  
Angela Testa ◽  
Natalie Falsetto ◽  
Michela Procaccini ◽  
Lorella Ragni

Aim: Ethanol is highly effective at inactivating enveloped viruses, including SARS-CoV-2. The aim of this study is to evaluate the virucidal activity of Amuchina Gel Xgerm (74% ethanol) against SARS-CoV-2, according to the European Standard EN14476:2013+A2:2019. Materials & methods: Virucidal activity of the study product was evaluated against SARS-CoV-2 strain USAWA1/2020 in suspension, in the presence of 0.3 g/l of bovine serum albumin. Results: The log10 reduction of SARS-CoV-2 in the presence of bovine serum albumin was ≥4.11 ± 0.12 after 30 s of exposure to the study product (80% dilution). Cytotoxicity was observed in the 100 dilution, affecting the detection limit by 1 log10. Conclusion: Virucidal activity against SARS-CoV-2 supports the effectiveness of this alcohol-based formulation as a prevention measure for COVID-19 illness.


Inorganics ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 97 ◽  
Author(s):  
Marie Gaschard ◽  
Farzaneh Nehzat ◽  
Thomas Cheminel ◽  
Bruno Therrien

The synthesis and characterization of three metalla-rectangles of the general formula [Ru4(η6-p-cymene)4(μ4-clip)2(μ2-Lanthr)2][CF3SO3]4 (Lanthr: 9,10-bis(3,3’-ethynylpyridyl) anthracene; clip = oxa: oxalato; dobq: 2,5-dioxido-1,4-benzoquinonato; donq: 5,8-dioxido-1,4-naphthoquinonato) are presented. The molecular structure of the metalla-rectangle [Ru4(η6-p-cymene)4(μ4-oxa)2(μ2-Lanthr)2]4+ has been confirmed by the single-crystal X-ray structure analysis of [Ru4(η6-p-cymene)4(μ4-oxa)2(μ2-Lanthr)2][CF3SO3]4 · 4 acetone (A2 · 4 acetone), thus showing the anthracene moieties to be available for reaction with oxygen. While the formation of the endoperoxide form of Lanthr was observed in solution upon white light irradiation, the same reaction does not occur when Lanthr is part of the metalla-assemblies.


Author(s):  
Thomas Labadie ◽  
Polly Roy

AbstractRecent developments on extracellular vesicles (EVs) containing multiple virus particles challenge the rigid definition of non-enveloped viruses. However, how non-enveloped viruses hijack cell machinery to promote non-lytic release in EVs, and their functional roles, remain to be clarified. Here we used Bluetongue virus (BTV) as a model of a non-enveloped arthropod-borne virus and observed that the majority of viruses are released in EVs, both in vitro and in the blood of infected animals. Based on the cellular proteins detected in these EVs, and use of inhibitors targeting the cellular degradation process, we demonstrated that these extracellular vesicles are derived from secretory lysosomes, in which the acidic pH is neutralized upon the infection. Moreover, we report that secreted EVs are more efficient than free-viruses for initiating infections, but that they trigger super-infection exclusion that only free-viruses can overcome.Author summaryRecent discoveries of non-enveloped virus secreted in EVs opened the door to new developments in our understanding of the transmission and pathogenicity of these viruses. In particular, how these viruses hijack the host cellular secretion machinery, and the role of these EVs compared with free-virus particles remained to be explored. Here, we tackled these two aspects, by studying BTV, an emerging arthropod-borne virus causing epidemics worldwide. We showed that this virus is mainly released in EVs, in vivo and in the blood of infected animals, and that inhibition of the cell degradation machinery decreases the release of infectious EVs, but not free-virus particles. We found that BTV must neutralize the pH of lysosomes, which are important organelles of the cell degradation machinery, for efficient virus release in EVs. Our results highlight unique features for a virus released in EVs, explaining how BTV transits in lysosomes without being degraded. Interestingly, we observed that EVs are more infectious than free-virus particles, but only free-viruses are able to overcome the super-infection exclusion, which is a common cellular defense mechanism. In conclusion, our study stresses the dual role played by both forms, free and vesicular, in the virus life cycle.


2020 ◽  
Author(s):  
Shengyu Liu

To investigate the effect of post-harvest light irradiation on the accumulation of flavonoids and limonoids, harvestedNewhall navel oranges were continuously exposed to light-emitting diode (LED) and ultraviolet (UV) light irradiationfor 6 days, and the composition and content of flavonoids and limonoids in the segments were determined usingUPLC-qTOF-MS at 0, 6, and 15 days after harvest. In total, six polymethoxylated flavonoids (PMFs), fiveflavoneO/C-glycosides, seven flavanone-O-glycosides, and three limonoids were identified in the segments. Theaccumulation of these components was altered by light irradiation. Red and blue light resulted in higher levels ofPMFs during exposure periods. The accumulation of PMFs was also significantly induced after white light, UVBand UVC irradiation were removed. Red and UVC irradiation induced the accumulation of flavone and flavanoneglycosides throughout the entire experimental period. Single light induced limonoid accumulation during exposureperiods, but limonoid levels decreased significantly when irradiation was removed. Principal component analysisshowed a clear correlation between PMFs and white light, between flavonoid glycosides and red light and UVC,and between limonoids and UVC. These results suggest that the accumulation of flavonoids and limonoids in citrusis regulated by light irradiation. White light, red light and UVC irradiation might be a good potential method forimproving the nutrition and flavor quality of post-harvest citrus.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yadollah Abdollahi ◽  
Azmi Zakaria ◽  
Nor Asrina Sairi ◽  
Khamirul Amin Matori ◽  
Hamid Reza Fard Masoumi ◽  
...  

The artificial neural network (ANN) modeling ofm-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration ofm-cresol while the efficiency was the only response as output. The performed experiments were designed into three data sets such as training, testing, and validation that were randomly splitted by the software’s option. To obtain the optimum topologies, ANN was trained by quick propagation (QP), Incremental Back Propagation (IBP), Batch Back Propagation (BBP), and Levenberg-Marquardt (LM) algorithms for testing data set. The topologies were determined by the indicator of minimized root mean squared error (RMSE) for each algorithm. According to the indicator, the QP-4-8-1, IBP-4-15-1, BBP-4-6-1, and LM-4-10-1 were selected as the optimized topologies. Among the topologies, QP-4-8-1 has presented the minimum RMSE and absolute average deviation as well as maximum R-squared. Therefore, QP-4-8-1 was selected as final model for validation test and navigation of the process. The model was used for determination of the optimum values of the effective variables by a few three-dimensional plots. The optimum points of the variables were confirmed by further validated experiments. Moreover, the model predicted the relative importance of the variables which showed none of them was neglectable in this work.


Sign in / Sign up

Export Citation Format

Share Document