u87 cells
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 74)

H-INDEX

18
(FIVE YEARS 6)

2021 ◽  
Vol 10 ◽  
pp. e2270
Author(s):  
Zahra Abbasy ◽  
Hamid Zaferani Arani ◽  
Mahsa Ale-Ebrahim ◽  
Vihan Moodi ◽  
Javad Nematian ◽  
...  

Background: Gliomas possess low immunogenicity, which is an inevitable hinder in front of cancer immunotherapy. Different interferons (IFNs) may proceed apoptosis instead in p53-dependent or independent pathways. P53 induces the anti-inflammatory programmed cell death in cancer cells; on the other hand, IFN gamma (IFNγ) is a modulatory/pro-inflammatory cytokine. There are contradictory reports of whether this cytokine can possess an anti- or pro-cancerous impact on tumors. Hence, we aimed to investigate the possible cooperative apoptotic effect of the P53 and IFNγ over expressions on the U87 glioblastoma cell line. Materials and Methods: The P53 expressing vector was amplified by Escherichia coli BL21. This vector was confirmed by the aid of sequencing. At the next step, U87 cells were transfected using lipofectamine. Cells were treated with P53 vector and/or IFNγ. The type of cellular death investigated by flow cytometry and the expression level of cleaved caspase-3 protein was also precisely demonstrated by western blotting. Results: Sequencing results revealed that inserted P53 was identical with human P53. Western blot results revealed that both IFNγ and P53 overexpression could up-regulate cleaved caspase-3 protein expression in this cell line. Interestingly, flow cytometry data determined that concurrent treatment with P53 exogenous overexpression and IFNγ induces about 70% apoptosis in U87; more than the sum of cell death occurs after IFNγ or P53 overexpression alone (~18%+21%=39%). Conclusion: The present study results showed that p53-overexpression and IFNγ could ultimately induce up-regulation of the caspase-3 and ultimately significant apoptosis increasing in the U87 cell line. Although IFNγ is believed to be a pro-inflammatory cytokine and P53 is an anti-inflammatory agent, our results demonstrated that they could act synergistically to induce apoptosis in U87 cells. [GMJ.2021;10:e2270]


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7610
Author(s):  
Dorra Aissaoui-Zid ◽  
Mohamed-Chiheb Saada ◽  
Wassim Moslah ◽  
Marie Potier-Cartereau ◽  
Aude Lemettre ◽  
...  

Glioblastoma is an aggressive cancer, against which medical professionals are still quite helpless, due to its resistance to current treatments. Scorpion toxins have been proposed as a promising alternative for the development of effective targeted glioblastoma therapy and diagnostic. However, the exploitation of the long peptides could present disadvantages. In this work, we identified and synthetized AaTs-1, the first tetrapeptide from Androctonus australis scorpion venom (Aa), which exhibited an antiproliferative effect specifically against human glioblastoma cells. Both the native and synthetic AaTs-1 were endowed with the same inhibiting effect on the proliferation of U87 cells with an IC50 of 0.56 mM. Interestingly, AaTs-1 was about two times more active than the anti-glioblastoma conventional chemotherapeutic drug, temozolomide (TMZ), and enhanced its efficacy on U87 cells. AaTs-1 showed a significant similarity with the synthetic peptide WKYMVm, an agonist of a G-coupled formyl-peptide receptor, FPRL-1, known to be involved in the proliferation of glioma cells. Interestingly, the tetrapeptide triggered the dephosphorylation of ERK, p38, and JNK kinases. It also enhanced the expression of p53 and FPRL-1, likely leading to the inhibition of the store operated calcium entry. Overall, our work uncovered AaTs-1 as a first natural potential FPRL-1 antagonist, which could be proposed as a promising target to develop new generation of innovative molecules used alone or in combination with TMZ to improve glioblastoma treatment response. Its chemical synthesis in non-limiting quantity represents a valuable advantage to design and develop low-cost active analogues to treat glioblastoma cancer.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4317
Author(s):  
Yan-Xi Chen ◽  
Phuong Thu Nguyen Le ◽  
Tsai-Teng Tzeng ◽  
Thu-Ha Tran ◽  
Anh Thuc Nguyen ◽  
...  

Declines in physiological functions are the predominant risk factors for age-related diseases, such as cancers and neurodegenerative diseases. Therefore, delaying the aging process is believed to be beneficial in preventing the onset of age-related diseases. Previous studies have demonstrated that Graptopetalum paraguayense (GP) extract inhibits liver cancer cell growth and reduces the pathological phenotypes of Alzheimer’s disease (AD) in patient IPS-derived neurons. Here, we show that GP extract suppresses β-amyloid pathology in SH-SYS5Y-APP695 cells and APP/PS1 mice. Moreover, AMP-activated protein kinase (AMPK) activity is enhanced by GP extract in U87 cells and APP/PS1 mice. Intriguingly, GP extract enhances autophagy in SH-SYS5Y-APP695 cells, U87 cells, and the nematode Caenorhabditis elegans, suggesting a conserved molecular mechanism by which GP extract might regulate autophagy. In agreement with its role as an autophagy activator, GP extract markedly diminishes mobility decline in polyglutamine Q35 mutants and aged wild-type N2 animals in C. elegans. Furthermore, GP extract significantly extends lifespan in C. elegans.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi100-vi100
Author(s):  
Javier Fierro ◽  
joshua Perez ◽  
Rocio Aguilar ◽  
Jake Dipasquale ◽  
An Tran ◽  
...  

Abstract Anti-glioblastoma multiform (GBM) immunotherapy poses a great challenge due to immunosuppressive brain tumor environments and the blood brain barrier (BBB). Programmed death ligand 1 (PD-L1) plays a key role in GBM immunosuppression, vitality, proliferation, and migration. Targeting PD-L1 for immunotherapy is a promising new avenue for treating GBM. CRISPR/Cas9 gene editing can be used to knockout both membrane and cytoplasmic PD-L1, leading to an enhanced immunotherapeutic strategy. We identified two sgRNA sequences located on PD-L1 exon 3. The first sgRNA recognized the forward strand of human PD-L1 near the beginning of exon 3 and cuts at approximately base pair 82 (g82). The second sgRNA recognized the reverse strand of exon 3 and cuts at base pair 165 (g165). Two sgRNAs, g82 and g165, created an 83bp deletion in PD-L1 genomic sequence. Two sgRNAs combination with a homology-directed repair template (HDR) was designed to enhance PD-L1 knockout specificity and efficiency. Both g82 and g165 were cloned into one CRISPR/Cas9 plasmid, and was co-transfected with HDR. GFP tagged CRISPR/Cas9 plasmid containing of g82 and g165 (Cas9-g82/165) was loaded into Rhodamine labeled nanoparticles (Cas9-g82/165-NPs) and then treated to GBM U87 cells. The enhanced intracellular uptake and transfection of Cas9-g82/165-NPs were detected by a fluorescence microscopy. T7E1, qRT-PCR and western blot analysis determined that the dual sgRNA CRISPR/Ca9 system knocked out both endogenous (80%) and exogenous (64%) PD-L1 in U87 cells and PD-L1 overexpression U87 cells, respectively. Deletion of PD-L1 reduced U87 migration and proliferation, while PD-L1 overexpression promoted tumor growth and tumor-associated macrophage polarization. Together, deletion of both membrane and cytoplasmic PD-L1 altered the PD-L1-associated immunosuppressive environment and prevented tumor progression and migration. Thus, two-sgRNAs CRISPR/Cas9 gene-editing system is a promising avenue for anti-GBM immunotherapy.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi165-vi165
Author(s):  
Sophie Peeters ◽  
Zhitong Chen ◽  
Richard Obenchain ◽  
Blake Haist ◽  
Robert Prins ◽  
...  

Abstract INTRODUCTION Cold atmospheric plasma (CAP) selectively induces reactive oxygen and nitrogen species (ROS/RNS) in many types of cancerous cells. ROS-mediated lipid peroxidation is thought to induce ferroptosis, apoptosis, and autophagy. We hypothesize that ferroptosis and apoptosis are key mechanisms of CAP-mediated cytotoxicity in high-grade glioma (HGG). METHODS B16, U87, GL261, EPD-210FHTC and human astrocyte NHA hTERT cells were treated with CAP for 10, 30, 60, 90, and 180 seconds. Proliferation and propidium iodide (PI)/annexin V flow cytometry assays were employed to quantify cytotoxicity, cell cycle phases and apoptosis. Mitochondrial superoxide concentration was measured using MitoSOX Red. Cells were pre-treated with ferroptosis inhibitors Ferrostatin-1 and Deferoxamine (DFO) in rescue assays. RESULTS Survival of GL261 and U87 cells after 90 seconds of CAP treatment was 3.7% and 7%, respectively, compared to 62% in NHA cells. A CAP dose-dependent increase in mitochondrial superoxide concentration was observed in GL261 and NHA (R2=0.88 and 0.99, respectively). A shift of EPD and NHA cells into G0 phase was noted after 180 seconds of treatment, compared to baseline (55.4% versus 1.2%, 100% vs. 27.5% respectively). Early apoptosis was more prominent in NHA cells (79% of dead cells), and late apoptosis in EPD cells after 60 seconds of treatment (86% of dead cells). DFO pre-treatment significantly reduced CAP cytotoxicity in GL261 (93% vs. 58% after 10 seconds) and U87 cells (85% vs. 13% after 60 seconds). DFO pre-treatment had no effect on NHA response to CAP. CONCLUSION CAP treatment induces dose-dependent increases in ROS and apoptosis in HGG lines tested more significantly than in NHA cells. CAP induces G1-phase cell cycle arrest in treated HGG cells and G0 arrest in non-cancerous cells. CAP-mediated cytotoxicity was significantly mitigated with DFO pre-treatment in HGG cells, suggesting that ferroptosis plays a critical role in the mechanism of CAP treatment in HGG.


Author(s):  
Seyed Noureddin Nematollahi-Mahani ◽  
◽  
Sepideh Ganjalikhan-Hakemi ◽  
Zahra Abdi ◽  
◽  
...  

Introduction: Glioblastoma multiforme (GBM) is an aggressive case of primary brain cancer which remains among the most fatal tumors worldwide. Although, some in vitro and in vivo models have been developed for a better understanding of GBM behavior; a natural model of GBM would improve the efficiency of experimental models to human GBM tumors. We aimed at the present study to examine the survival and durability of U87 cells in the brain of wild-type rats. Methods: U87 cells were intracranially implanted in twenty-one wild-type rats. Tumor size and morphology as well as infiltration of immune cells were investigated at three-time points by H&E and immunohistochemistry (IHC). Results: The results demonstrated that the inoculation of GBM cells led to the infiltration of host defense system cells which caused to immunological regression of the tumor mass after six weeks. While the tumors successfully developed without any sign of host defense invasion in the second week of GBM inoculation. Also, the decrease of tumor size and infiltration of immune system cells were observed at the fourth week. Conclusion: These data remarkably suggest that time plays a crucial role in activating the immune system against human GBM tumors in rats; and it shows that the regression of tumor mass depends on a time slope.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1668
Author(s):  
Stefano Persano ◽  
Francesco Vicini ◽  
Alessandro Poggi ◽  
Jordi Leonardo Castrillo Fernandez ◽  
Giusy Maria Rita Rizzo ◽  
...  

Cancer immunotherapies have been approved as standard second-line or in some cases even as first-line treatment for a wide range of cancers. However, immunotherapy has not shown clinically relevant success in glioblastoma (GBM). This is principally due to the brain’s “immune-privileged” status and the peculiar tumor microenvironment (TME) of GBM characterized by a lack of tumor-infiltrating lymphocytes and the establishment of immunosuppressive mechanisms. Herein, we explore a local mild thermal treatment, generated via cubic-shaped iron oxide magnetic nanoparticles (size ~17 nm) when exposed to an external alternating magnetic field (AMF), to induce immunogenic cell death (ICD) in U87 glioblastoma cells. In accordance with what has been observed with other tumor types, we found that mild magnetic hyperthermia (MHT) modulates the immunological profile of U87 glioblastoma cells by inducing stress-associated signals leading to enhanced phagocytosis and killing of U87 cells by macrophages. At the same time, we demonstrated that mild magnetic hyperthermia on U87 cells has a modulatory effect on the expression of inhibitory and activating NK cell ligands. Interestingly, this alteration in the expression of NK ligands in U87 cells upon MHT treatment increased their susceptibility to NK cell killing and enhanced NK cell functionality. The overall findings demonstrate that mild MHT stimulates ICD and sensitizes GBM cells to NK-mediated killing by inducing the upregulation of specific stress ligands, providing a novel immunotherapeutic approach for GBM treatment, with potential to synergize with existing NK cell-based therapies thus improving their therapeutic outcomes.


2021 ◽  
Author(s):  
Mervenur Yavuz ◽  
Siddika Akgul ◽  
Egemen Kaya ◽  
Turan Demircan

Grade IV neoplasm of the central nervous system, GBM, is associated with poor prognosis and relatively short overall survival. Due to the current limitations in treatment methods, GBM is characterized as an incurable disease, and research to advance therapeutic options is required. Conditioned medium is commonly used in in-vitro studies complementary to animal experiments to simulate tumor microenvironment and has the potential to challenge and expand our current understanding of secretome effect on tumor characteristics. This study aimed to investigate the effects of conditioned mediums of GBM cell lines on each other. Conditioned mediums' cellular and molecular effects were evaluated using commonly employed techniques such as MTT assay, colony formation assay, wound healing assay, EdU labeling-based flow cytometry, and qRT-PCR. Our study demonstrated that conditioned medium harvested from U87 or LN229 cells at 48th h exhibited an anti-growth activity on each other by changing the gene expression pattern. Furthermore, the conditioned medium of LN229 decreased the migration capacity of U87 cells, and the conditioned medium of U87 cells significantly suppressed the LN229 proliferation. We believe that this initial work provides new insights for a better understanding of GBM cell lines' secretome roles and highlights the necessity of further studies to unveil the secretome content.


2021 ◽  
Author(s):  
Hua Gao ◽  
Yang Zhongjin ◽  
Li Zhenye ◽  
Li Zhenzong

Abstract Background: ADP-ribosylation-like factor4C (ARL4C) is overexpressed in several cancer tissues and is involved in cancer development. Increasing evidence reveals that aberrant microRNAs (miRNAs) expression play a crucial role in the tumorigenesis of cancers. Nevertheless, the exact mechanism that regulates ARL4C expression in glioma has not been fully elucidated. The aim of this study was to investigate expression and significance of miR-654-3p/ARL4C in glioma.Methods: CGGA and TCGA databases were used to study the prognosis role of miR-654-3p, ARL4C and the relationship between ARL4C and pathological grade in gliomas. Real-time quantitative PCR was performed to detect the levels of miR-654-3p and ARL4C in glioma tissues. CCK-8 and colony formation experiments were used to observe the effects of miR-654-3p and ARL4C on the proliferation of U87 cells.Results: CGGA database and TCGA database both showed that the level of ARL4C was increased along with the WHO grades of glioma, and patients with high ARL4C had lower IDH mutation ratio, older age and poor overall survival (OS) compared with patients with low ARL4C. The clinical features in patients with high miR-654-3p showed the opposite trend compared with patients with high ARL4C. In vitro experiments showed that overexpression of ARL4C promoted cell proliferation in U87 cells. Dual-luciferase reporter gene assays showed that ARL4C was the target gene of miR-654-3p, and miR-654-3p mimics could inhibit the cell proliferation of U87 cells, and ARL4C partly counteracted the role of miR-654-3p in U87 cells.Conclusions: miR-654-3p/ARL4C is associated with pathological grade of glioma, and patients with high ARL4C or low miR-654-3p have shorter OS. miR-654-3p/ARL4C may serve as a prognostic factor in patients with glioma and new potential therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document