Adsorption–Desorption Characteristics of ss-DNA on 2D TpTta-COF Studied by Fluorescently Labeled Oligonucleotides

NANO ◽  
2021 ◽  
pp. 2150050
Author(s):  
Zhaoyu Han ◽  
Sen Li ◽  
Shaoxian Yin ◽  
Zhi-Qin Wang ◽  
Yanfei Cai ◽  
...  

Being the newest member of the 2D materials family, 2D-nanosheet possesses many distinctive physical and chemical properties resulting in a wide range of potential applications. Recently, it was discovered that 2D COF can adsorb single-stranded DNA (ss-DNA) efficiently as well as usefully to quench fluorophores. These properties make it possible to prepare DNA-based optical biosensors using 2D COF. While practical analytical applications are being demonstrated, the fundamental understanding of binding between 2D COF and DNA in solution received relatively less attention. In this work, we carried out a systematic study to understand the adsorption and desorption kinetic, mechanism, and influencing factors of ss-DNA on the surface of 2D COF. We demonstrated that shorter DNAs are adsorbed more rapidly and bind more tightly to the surface of 2D COF. The adsorption is favored by a higher pH. The different buffer types also can affect the adsorption. In Tris-HCl solution, the adsorption reached highest efficiency. By adding the complementary DNA (cDNA), desorption of the absorbed DNA on 2D COF can be achieved. Further, desorption efficiency can also be exchanged by various surfactant in solution. These findings are important for further understanding of the interactions between DNA and COFs and for the optimization of DNA and COF-based devices and sensors.


2013 ◽  
Vol 1505 ◽  
Author(s):  
Kexin Chen

ABSTRACTGraphene, a monolayer of sp2-bonded carbon atoms, has been attracting worldwide interests because of its unique two-dimensional structure, various fascinating properties and a wide range of intriguing potential applications. The graphene research is very active in China and has been developing rapidly in the past few years, which covers nearly all the areas related to graphene including theories, synthesis, physical and chemical properties, and applications. Over 100 research institutions have been involved in graphene research with fast-growing project supports. In this paper, the status of graphene research in China is first discussed based on the number of publications and patents as well as the institutions involved. Then the projects and fundings from both government and companies for graphene research are briefly introduced. Finally, the highlights of graphene research in China are reviewed, which include chemical vapor deposition growth and transfer, mass production, and assembly of graphene, and its applications in energy storage, sensing, composites and solar cells.



Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1939
Author(s):  
Helyati Abu Hassan Shaari ◽  
Muhammad Mahyiddin Ramli ◽  
Mohd Nazim Mohtar ◽  
Norizah Abdul Rahman ◽  
Azizan Ahmad

Poly(methyl methacrylate) (PMMA) is a lightweight insulating polymer that possesses good mechanical stability. On the other hand, polyaniline (PANi) is one of the most favorable conducting materials to be used, as it is easily synthesized, cost-effective, and has good conductivity. However, most organic solvents have restricted potential applications due to poor mechanical properties and dispersibility. Compared to PANi, PMMA has more outstanding physical and chemical properties, such as good dimensional stability and better molecular interactions between the monomers. To date, many research studies have focused on incorporating PANi into PMMA. In this review, the properties and suitability of PANi as a conducting material are briefly reviewed. The major parts of this paper reviewed different approaches to incorporating PANi into PMMA, as well as evaluating the modifications to improve its conductivity. Finally, the polymerization condition to prepare PMMA/PANi copolymer to improve its conductivity is also discussed.



2021 ◽  
Vol 9 ◽  
Author(s):  
O. Yablonskaya ◽  
E. Buravleva ◽  
K. Novikov ◽  
V. Voeikov

Hydrated fullerene C60 (HyFn) is a supramolecular object in which the nanosized fullerene molecule is enclosed in a multilayer shell of water molecules. Despite the fact that fullerene C60 is chemically rather inert, aqueous solutions of HyFn exhibit a wide spectrum of biological activity in particular in low and ultra-low concentrations. Thus, physical and chemical properties of aqueous solutions of HyFn in a wide range of its dilutions are of interest. Here we compared some physical and chemical properties of aqueous systems prepared by successive 100-fold dilutions of HyFn (10–7 M) with deionized water, with their intensive shaking at each stage up to the calculated HyFn concentration of 10–31 M and of the corresponding “dilutions” of deionized water prepared in the same manner (controls). We studied the character of рН changes in dilutions when titrating them with HCl and NaOH. It turned out that HyFn dilutions had significantly higher buffering capacity against acidification with HCl than control water “dilutions.” At the highest acidity reached pH in all HyFn dilutions was almost 0.3 units higher than in the respective controls. Average buffering capacity of HyFn dilutions and water controls when titrated with NaOH did not differ. However, differences in buffering capacity could be seen between consecutive dilutions of HyFn at their titration either with NaOH or with HCl. Most prominent differences were observed between consecutive HyFn dilutions in the range of calculated concentrations 10–17–10–31 M titrated with NaOH while no significant differences in pH between equivalent “dilutions” of control water were observed. Similar though less prominent variations in buffering capacity between consecutive HyFn dilutions titrated with HCl were also noticed. Thus, titration with an acid and especially with an alkali made it possible to reveal differences between individual dilutions of HyFn, as well as differences between HyFn dilutions and corresponding dilutions of water. These features may be due to complexity in the structural properties of aqueous systems, which, supposedly, can arise due to the emergence of heterogenous aqueous regions (“clouds”) in the course of their dilutions with intensive mixing at each stage. In order to find out if such heterogeneity is a characteristic for HyFn dilutions we used the method of drying microsphere-containing droplets, whose aqueous base were either HyFn dilutions in the range of calculated HyFn concentration 10–7–10–31 M or respective water controls. It was found that a significant part of HyFn dilutions is characterized by mesoscopic heterogeneity. It showed up by the tendency of microspheres to concentrate in a specific way resembling ornaments once the droplets had dried. As the degree of HyFn dilution increased, the number of dried droplets with an ornament-like microsphere distribution increased. Same was also observed in water control drops. However, for the dilutions of HyFn equivalent to concentrations 10–19–10–31 M the percentage of complexly structured dried up droplets reached 60–80%, while for dried out drops of respective water controls it did not exceed 15–20%. Thus, the physicochemical properties of high dilutions of hydrated fullerene differ not only from each other dependently on the dilution level, but also from those of high dilutions of water, which can be explained by the structuredness and heterogeneity of these aqueous systems. Therefore, upon dilution process the properties of the solutions change according to complex and non-linear laws so that final dilutions cannot be identical in their properties and features to those of the initial solutions (before dilutions process) and to the untreated water. Dilution process, in view of the aforementioned, should not be underestimated when analyzing properties of the solutions, having shown to be able to affect dramatically properties of the solutions.



2019 ◽  
Vol 7 (39) ◽  
pp. 12312-12320 ◽  
Author(s):  
Xiaoyong Yang ◽  
Deobrat Singh ◽  
Zhitong Xu ◽  
Ziwei Wang ◽  
Rajeev Ahuja

Motivated by the extraordinary physical and chemical properties of Janus transition-metal dichalcogenides (TMDs) due to the change of the crystal field originating from their asymmetry structures, the electronic and optical properties of the MoSeTe monolayer in 2H and 1T phases are systematically studied by first-principles calculations, and a detailed comparison with the parental MoSe2 and MoTe2 monolayer is made.



2018 ◽  
Vol 44 ◽  
pp. 00197 ◽  
Author(s):  
Katarzyna Wystalska ◽  
Krystyna Malińska ◽  
Renata Włodarczyk ◽  
Olga Chajczyk

Pyrolysis of biomass residues from agriculture and food processing industry allows production of biochars with diverse physical and chemical properties for a wide range of applications in agriculture and environmental protection. Biochars produced from pelletized sunflower husks through slow pyrolysis in the range of temperatures (480–580°C) showed total carbon of 70.53%–81.96%, total nitrogen of 1.2%, alkaline pH (9.37–10.32), low surface area (0.93–2.91 m2 g-1) and porosity of 13.23–15.43%. Higher pyrolysis temperatures resulted in lower biochar yields. With the increase in temperature the content of organic matter, nitrogen, Ca and Mg decreased whereas the increase in temperature resulted in higher contents of total carbon and phosphorus. Produced biochars showed potential for agricultural applications.



2020 ◽  
Vol 36 (4) ◽  
pp. 493-511 ◽  
Author(s):  
Juan C. Ruiz-Cornejo ◽  
David Sebastián ◽  
Maria J. Lázaro

AbstractCarbon nanofibers (CNFs) have shown great potential in multiple applications. Their versatility is derived from the possibility of tuning their physical and chemical properties. CNFs can be synthesized using two main methods: the catalytic decomposition of carbon precursors or the electrospinning and carbonization of polymers. The most appropriate method relies on the desired characteristics of the CNFs. Some of their applications include the synthesis of catalysts and catalytic supports, as electrodes for fuel cell devices, in hydrogen storage systems, and in functional nanocomposites. In this review, recent advances in the synthesis and potential applications of CNFs are examined.



2013 ◽  
Vol 543 ◽  
pp. 72-75
Author(s):  
Balakrishnan Karthikeyan ◽  
Marimuthu Murugavelu

The emergence of nanoparticles (NPs) has opened new opportunities in analytical chemistry [. These NPs exhibit different properties and functionalities when compared to monometallic particles. In particular, they show enhanced selectivity and reactivity when used as catalysts and sensors [2-. The NPs have large surface area, high surface free energy, good biocompatibility and suitability, and it has been used in constructing electrochemical biosensors [7, . The fascinating physical and chemical properties of NPs offer excellent prospects for a wide range of bio sensing applications [ . Uric acid (UA) is the principal final product of purine metabolism in the human body [1. It has been shown that extreme abnormalities of UA levels are symptoms of several diseases (e.g. gout, hyper uricaemia and LeschNyhan syndrome)[11,1.In general, electro active UA can be irreversibly oxidized in aqueous solution and the major product is allantoin [1. In continuation of our interest with the bimetal nanoparticle (BNP) sensing here in this study, we employed Ag/Pt BNPs for detecting of UA.



RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 37441-37446 ◽  
Author(s):  
Qingzhi Wang ◽  
Jiankun Liu ◽  
Lingqing Wang

Freeze–thaw cycles (FTCs) can strongly influence the physical and chemical properties of soils in cold regions, which can in turn affect the adsorption–desorption characteristics of phosphorus (P) in the soil.



1987 ◽  
Vol 105 ◽  
Author(s):  
Takuji Goda ◽  
Hirotsugu Nagayama ◽  
Akihiro Hishinuma ◽  
Hideo Kawahara

AbstractA new coating process of silicon dioxide (SiO2) “LPD” process, has been developed recently. Silicon dioxide (SiO2) film can be deposited on any substrate at the room temperature by immersing in hexafluorosilicic acid (H2SiF6).In this study, physical and chemical properties of the “LPD- SiO2” film were investigated by using XPS, IR, ellipsometry, and etch rate measurement. The properties of this film deposited at the room temperature were almost the same as those of plasma CVD. The “LPD-SiO2” film without annealing was contained traces of F and OH. However, by annealing, F and OH were rapidly evaporated from the film and the film was getting densified.As the “LPD-SiO2” film deposited at the room temperature showed very good results of chemical etching rate and of step coverage, it is expected that it is possible to use this “LPD- SiO2” film in the wide range of industrial area.



2017 ◽  
Vol 888 ◽  
pp. 485-490
Author(s):  
Tengku Sharifah Marliza ◽  
Mohd Ambar Yarmo ◽  
Azizul Hakim ◽  
Maratun Najiha Abu Tahari ◽  
Yun Hin Taufiq-Yap

Supported ionic liquid (IL) [bmim][CF3SO3] on SiO2 was prepared, characterized and its potential evaluated for CO2 capture via adsorption and desorption studies using gas adsorption analyzer. The physical and chemical properties were determined using N2 adsorption/desorption and CO2-TPD analysis. The increasing IL loading caused a drastic decrease in the surface area as well as pore volume due to the confinement of IL within the micropore and mesopore area. However, the increasing IL loading increased the basicity of the sorbent which significantly enhanced CO2 chemisorption. Supported [bmim][CF3SO3] on SiO2 revealed the physical and chemical adsorption of CO2 and resulted in a remarkable CO2 adsorption capacity at atmospheric pressure and room temperature (66.7 mg CO2/gadsorbent) which has great potential in industrial applications.



Sign in / Sign up

Export Citation Format

Share Document