Surface engineering of Ti3C2Tx MXene by oxygen plasma irradiation as room temperature ethanol sensor

Author(s):  
Zijing Wang ◽  
Fen Wang ◽  
Angga Hermawan ◽  
Jianfeng Zhu ◽  
Shu Yin

In this work, a surface modification strategy by oxygen plasma irradiation was introduced for the first time to significantly improve the room temperature sensing performance of Ti3C2T[Formula: see text] MXene. Oxygen plasma irradiation induced TiO2 formation on the Ti3C2T[Formula: see text] surface, produced lattice distortion, increased the specific surface area, and provided mesoporous structures. The gas sensitivity performance characterization results show the gas response value of Ti3C2T[Formula: see text] irradiated for 0.5 h (Ti3C2T[Formula: see text]0.5P) was hundreds of times better than the pristine Ti3C2T[Formula: see text]alongside with its sufficient response time (280 s) and rapid recovery time (11 s). The excellent sensing performance is attributed to the formation of more reactive sites on the edge and basal planes of Ti3C2T[Formula: see text] and mesoporous structures which greatly improved the adsorption of ethanol. Additionally, the relatively low work function of TiO2 facilitates the formation of a Schottky junction for easy migration of charge carrier, the thereby shortening the sensing response time. This strategy offers a facile and controllable surface modification of other 2D materials, without damaging their structures.

RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 37085-37092 ◽  
Author(s):  
Ying Yang ◽  
Li Sun ◽  
Xiangting Dong ◽  
Hui Yu ◽  
Tingting Wang ◽  
...  

Fe3O4nanoparticles-decorated reduced graphene oxide nanocomposites have been successfully synthesized using solvothermal-pyrolytic method. They have superior gas sensing performance with low detection limit, high sensitivity and short response time.


2008 ◽  
Vol 47-50 ◽  
pp. 1510-1513 ◽  
Author(s):  
Yasuhiro Shimizu ◽  
Keiko Sakamoto ◽  
Masaki Nakaoka ◽  
Takeo Hyodo ◽  
Makoto Egashira

H2 sensing properties of anodic TiO2 films equipped with Pd or Pd-Pt alloy electrodes has been investigated in air and in N2 atmosphere at 250°C and room temperature. The use of a Pd-Pt alloy electrode and a Pt paste improved the magnitude of H2 response, response time, stability and pretreatment- and atmosphere-dependent response properties under humid environments.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8269
Author(s):  
Kai Sun ◽  
Guanghui Zhan ◽  
Hande Chen ◽  
Shiwei Lin

CeO2/ZnO-heterojunction-nanorod-array-based chemiresistive sensors were studied for their low-operating-temperature and gas-detecting characteristics. Arrays of CeO2/ZnO heterojunction nanorods were synthesized using anodic electrodeposition coating followed by hydrothermal treatment. The sensor based on this CeO2/ZnO heterojunction demonstrated a much higher sensitivity to NO2 at a low operating temperature (120 °C) than the pure-ZnO-based sensor. Moreover, even at room temperature (RT, 25 °C) the CeO2/ZnO-heterojunction-based sensor responds linearly and rapidly to NO2. This sensor’s reaction to interfering gases was substantially less than that of NO2, suggesting exceptional selectivity. Experimental results revealed that the enhanced gas-sensing performance at the low operating temperature of the CeO2/ZnO heterojunction due to the built-in field formed after the construction of heterojunctions provides additional carriers for ZnO. Thanks to more carriers in the ZnO conduction band, more oxygen and target gases can be adsorbed. This explains the enhanced gas sensitivity of the CeO2/ZnO heterojunction at low operating temperatures.


2021 ◽  
Author(s):  
Lanjuan Zhou ◽  
Qian Mi ◽  
Yingbo Jin ◽  
Tingting Li ◽  
Dongzhi Zhang

Abstract In this paper, MoO3/MoSe2 n-n heterostructure was constructed for fabricating trimethylamine (TMA) gas sensor by an improved hydrothermal and spin-coating method. The surface morphology and microstructure of the prepared materials were analyzed by XRD, XPS, SEM and TEM characterization methods. The microstructural characterization results demonstrated that the MoO3/MoSe2 heterostructure had been successfully synthesized, in which the MoSe2 had a flower-shaped structure, and MoO3 had a rod-shaped structure. At the same time, the MoSe2 surface exhibited periodic honeycomb structure. The gas-sensitivity experimental results showed that the proposed MoO3/MoSe2 sensor had excellent TMA sensing performance at room temperature, including high response capability, low detection limit (20 ppb), short response/recovery time (12 s/19 s), long-term stability, good repeatability and outstanding selectivity. The heterostructure of MoO3/MoSe2 had made outstanding contributions to the enhanced TMA gas sensing performance at room temperature.


2006 ◽  
Vol 45 (11) ◽  
pp. 8994-8996 ◽  
Author(s):  
Masanori Kawamori ◽  
Ken-ichiro Nakamatsu ◽  
Yuichi Haruyama ◽  
Shinji Matsui

2018 ◽  
Vol 42 (19) ◽  
pp. 15954-15961 ◽  
Author(s):  
Cecilia A. Zito ◽  
Tarcísio M. Perfecto ◽  
Diogo P. Volanti

The porous CeO2 nanospheres showed an enhanced triethylamine sensing performance at 98% of relative humidity in terms of sensitivity, selectivity, repeatability, and response time.


2019 ◽  
Vol 14 (14) ◽  
pp. 1381-1384
Author(s):  
Jie Chen ◽  
Zhihua Ying ◽  
Peng Zheng ◽  
Rongfa Gao ◽  
Jinbang Mei

CrystEngComm ◽  
2021 ◽  
Author(s):  
Jia Guo ◽  
Hang Li ◽  
Shushu Chu ◽  
Qi Zhang ◽  
Ziqiong Lin ◽  
...  

Porous MoO3/V0.13Mo0.87O2.935 heterostructures self-assembled with 2D nanosheets have been primarily prepared by a facile method for effectively detecting ethanol at room temperature. V0.13Mo0.87O2.935 phase contributes to the modified microspheres and...


Sign in / Sign up

Export Citation Format

Share Document