Advances in DNA Nanostructure-Based Smart Drug Delivery Systems

Nano LIFE ◽  
2017 ◽  
Vol 07 (01) ◽  
pp. 1730001 ◽  
Author(s):  
Xingjie Hu ◽  
Zejun Wang ◽  
Chunhai Fan ◽  
Haiyun Song

Highly specific deoxyribonucleic acid (DNA) base-pairing not only carries genetic information, but also provides the basis for self-assembly of novel nanostructures with programmable shapes and sizes. Unlike single-stranded and double-stranded DNA, DNA nanostructures exhibit good cellular permeability. They also have characteristics of uniform size, easy functionalization, precise addressability, excellent water solubility and high biocompatibility. Due to their unique properties, these tailored molecular devices are ideal nanoscale systems for targeting cells and triggering cellular responses. Recent progress in the field of DNA nanotechnology has demonstrated effectiveness and advantages of DNA nanostructures as smart and targeted drug delivery systems or imaging agents within living organisms. In this review, we summarize the recent advances in structure design, cargo loading and cellular delivery of DNA nanocarriers, and discuss their potential in therapeutic applications.

Author(s):  
Sunitha M Reddy ◽  
Sravani Baskarla

This article describes current strategies to enhance aqueous solubility and dissolution rate of poor soluble drugs. Most drugs in the market are lipophilic with low or poor water solubility. There are various methods to enhance solubility: co-solvency, particle size reduction, salt formation and Self Nanoemulsifying drug delivery systems, SEDDS is a novel approach to enhance solubility, dissolution rate and bioavailability of drugs. The study involves formulation and evaluation of solid self-Nano emulsifying drug delivery system (S-SNEDDS) to enhance aqueous solubility and dissolution rate. Oral route is the most convenient route for non-invasive administration. S-SNEDDS has more advantages when compared to the liquid self-emulsifying drug delivery system. Excipients were selected depends upon the drug compatibility oils, surfactants and co surfactants were selected to formulate Liquid SNEDDS these formulated liquid self-nano emulsifying drug delivery system converted into solid by the help of porous carriers, Melted binder or with the help of drying process. Conversion process of liquid to solid involves various techniques; they are spray drying; freeze drying and fluid bed coating technique; extrusion, melting granulation technique. Liquid SNEDDS has a high ability to improve dissolution and solubility of drugs but it also has disadvantages like incompatibility, decreased drug loading, shorter shelf life, ease of manufacturing and ability to deliver peptides that are prone to enzymatic hydrolysis.  


Author(s):  
Ameneh Mohammadi ◽  
Pooria Gill ◽  
Pedram Ebrahimnejad ◽  
Said Abediankenari ◽  
Zahra Kashi

: The application of nanotechnology in medicine and pharmaceutical purpose suggested a novel procedure in the nanotechnology terminology as nanomedicine. There is a wide range of applications for nanotechnology in medicine, such as the use of nanocarriers in drug delivery systems. Recently a remarkable attention to DNA has been made through its amazing functionality and its nature as a nanomaterial in biological systems. Since DNA is a biocompatible, the use of DNA as a nanomaterial in medicine has shown a great perspective of rational engineering of DNA nanostructures. According to new approaches in treatment of diseases in gene levels, gene therapy, using DNA as a nanomedicine possesses an important role in the medical sciences as the researchers published enormous papers and patents in the fields, for instance, the applications of DNA and DNA-based nanostructures as drug or gene nanocarriers, DNA-based diagnostics and DNA nanovasccines. Here, some examples of DNA-based nanomedicine in the patent frame were reviewed.


Author(s):  
Qinqin Hu ◽  
Hua Li ◽  
Lihua Wang ◽  
Hongzhou Gu ◽  
Chunhai Fan

2013 ◽  
Vol 63 (4) ◽  
pp. 427-445 ◽  
Author(s):  
Katja Čerpnjak ◽  
Alenka Zvonar ◽  
Mirjana Gašperlin ◽  
Franc Vrečer

Abstract Low oral bioavailability as a consequence of low water solubility of drugs is a growing challenge to the development of new pharmaceutical products. One of the most popular approaches of oral bioavailability and solubility enhancement is the utilization of lipid-based drug delivery systems. Their use in product development is growing due to the versatility of pharmaceutical lipid excipients and drug formulations, and their compatibility with liquid, semi-solid, and solid dosage forms. Lipid formulations, such as self-emulsifying (SEDDS), self-microemulsifying SMEDDS) and self- -nanoemulsifying drug delivery systems (SNEDDS) were explored in many studies as an efficient approach for improving the bioavailability and dissolution rate of poorly water-soluble drugs. One of the greatest advantages of incorporating poorly soluble drugs into such formulations is their spontaneous emulsification and formation of an emulsion, microemulsion or nanoemulsion in aqueous media. This review article focuses on the following topics. First, it presents a classification overview of lipid-based drug delivery systems and mechanisms involved in improving the solubility and bioavailability of poorly water-soluble drugs. Second, the article reviews components of lipid-based drug delivery systems for oral use with their characteristics. Third, it brings a detailed description of SEDDS, SMEDDS and SNEDDS, which are very often misused in literature, with special emphasis on the comparison between microemulsions and nanoemulsions.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1194
Author(s):  
Aristote B. Buya ◽  
Ana Beloqui ◽  
Patrick B. Memvanga ◽  
Véronique Préat

Approximately one third of newly discovered drug molecules show insufficient water solubility and therefore low oral bio-availability. Self-nano-emulsifying drug-delivery systems (SNEDDSs) are one of the emerging strategies developed to tackle the issues associated with their oral delivery. SNEDDSs are composed of an oil phase, surfactant, and cosurfactant or cosolvent. SNEDDSs characteristics, their ability to dissolve a drug, and in vivo considerations are determinant factors in the choice of SNEDDSs excipients. A SNEDDS formulation can be optimized through phase diagram approach or statistical design of experiments. The characterization of SNEDDSs includes multiple orthogonal methods required to fully control SNEDDS manufacture, stability, and biological fate. Encapsulating a drug in SNEDDSs can lead to increased solubilization, stability in the gastro-intestinal tract, and absorption, resulting in enhanced bio-availability. The transformation of liquid SNEDDSs into solid dosage forms has been shown to increase the stability and patient compliance. Supersaturated, mucus-permeating, and targeted SNEDDSs can be developed to increase efficacy and patient compliance. Self-emulsification approach has been successful in oral drug delivery. The present review gives an insight of SNEDDSs for the oral administration of both lipophilic and hydrophilic compounds from the experimental bench to marketed products.


NANO ◽  
2015 ◽  
Vol 10 (05) ◽  
pp. 1530004 ◽  
Author(s):  
Ru Fang ◽  
Shaozong Yang ◽  
Yanbin Wang ◽  
Hua Qian

Paclitaxel (PTX) is usual for the treatment of a variety of malignancies, however, its applications are greatly limited due to its poor water solubility. Over the past years, there has been a considerable research interest in the area of nanoscale drug delivery systems (DDSs) as carrier for PTX due to their solubilization, safety, targeting and controlled release. There are many different types and shapes of nanoscale DDSs that have been prepared to deliver PTX, including nanoliposome, lipid nanoemulsion, nanosuspension, nanocapsule, nanofiber, nanotube, nanopolymersome, micelle and nanoparticle (NP). Nanoscale DDSs can be based on lipids, proteins, polysaccharides, polymers or other materials. The recent strategic developments of PTX formulation have been discussed with emphasis on lipid-, polymer- and protein-based nanoscale DDSs. Here we focus on the comparative analysis of the preparation, morphology, solubilization, targeting, penetrability, controllability and efficacy profile of various PTX-loaded nanoscale DDSs, which were reported in the different researches. Meanwhile the advantages and disadvantages are also discussed for each type of DDS. Furthermore, the current review embodies an in-depth discussion of human serum albumin (HSA) NP formulation, which showed significantly great efficacy and low toxicity. All the information obtained in this review might shed light on designing new and better nanoscale PTX formulations for potential anticancer applications in the clinic.


2020 ◽  
Vol 20 (18) ◽  
pp. 2169-2189
Author(s):  
Shiyu Chen ◽  
Zhimei Song ◽  
Runliang Feng

Background: Paclitaxel (PTX) has been clinically used for several years due to its good therapeutic effect against cancers. Its poor water-solubility, non-selectivity, high cytotoxicity to normal tissue and worse pharmacokinetic property limit its clinical application. Objective: To review the recent progress on the PTX delivery systems. Methods: In recent years, the copolymeric nano-drug delivery systems for PTX are broadly studied. It mainly includes micelles, nanoparticles, liposomes, complexes, prodrugs and hydrogels, etc. They were developed or further modified with target molecules to investigate the release behavior, targeting to tissues, pharmacokinetic property, anticancer activities and bio-safety of PTX. In the review, we will describe and discuss the recent progress on the nano-drug delivery system for PTX since 2011. Results: The water-solubility, selective delivery to cancers, tissue toxicity, controlled release and pharmacokinetic property of PTX are improved by its encapsulation into the nano-drug delivery systems. In addition, its activities against cancer are also comparable or high when compared with the commercial formulation. Conclusion: Encapsulating PTX into nano-drug carriers should be helpful to reduce its toxicity to human, keeping or enhancing its activity and improving its pharmacokinetic property.


Author(s):  
NIKITA SEHGAL ◽  
VISHAL GUPTA N ◽  
SANDEEP KANNA

In recent decades, the rise in the investigation of new drugs had made health-care system expensive compared to conventional drug delivery systems and techniques. The present drug delivery systems have become highly productive and are growing fast. Majority of the anticancer agent has low water solubility resulting in multistep synthetic routes that require higher selectivity and specificity that can cause difficulty in the development of the formulation. Nanosponges (NSs) are branched cyclodextrin (CD) polymeric systems which have proven to be a boon in the pharmaceutical and biomedical fields. Different kinds of NSs based on different types of CDs and crosslinkers are used for developing of new drug formulations from the past few years for various applications in health care. Nanotechnology has overcome the issues regarding the drug solubility, stability, and other parameters and has attained success in achieving of sustained release, increased activity, improved permeability, delivery of nucleoprotein, the stimuli-responsive release of the drug, and improved drug bioavailability. There is a huge eruption of research on NSs for cancer treatment. Multiple anticancer moieties have been developed, taking into account the pharmacological and physicochemical perspective of the drug to develop a NS formulation. Our target in this review is to catch an efficient and far-reaching NSs for malignancy cancer treatment announced until now. This survey will give a perfect stage for providing details for researchers taking a shot at using new polymers for improving the treatment of the disease using nanotechnology. The present article provides details regarding antineoplastic molecules and provides ideas on CD-based NSs specifically using curcumin, tamoxifen, resveratrol, quercetin, oxygen-NSs, temozolomide, doxorubicin, and 5-fluorouracil (5-FU), and erlotinib (ETB) glutathione.


ACS Nano ◽  
2013 ◽  
Vol 7 (10) ◽  
pp. 8320-8332 ◽  
Author(s):  
Chun-Hua Lu ◽  
Bilha Willner ◽  
Itamar Willner

Sign in / Sign up

Export Citation Format

Share Document