Predictive Modeling and Correlated Response Optimization of Polymethylmethacrylate (PMMA)-Based Bio-Nano-Composite Material Using a Hybrid Module

Nano LIFE ◽  
2021 ◽  
Author(s):  
Umang Dubey ◽  
Shivi Kesarwani ◽  
Rajesh Kumar Verma

Polymethylmethacrylate (PMMA) is commonly known as bone cement, having good biocompatibility, mechanical qualities. It is extensively used in the biomedical sector as a synthetic bone material, orthopedic surgery and dental applications. However, some primary machining is required to achieve the tailored shape, size and finish before application in the human body. This study focuses on the machining (drilling) behavior of the developed PMMA-based Hydroxyapatite (PMMA-HA) bio-nano- composites. The machining efficiency and parametric control were estimated using a combined principal component analysis (PCA) module and evaluation based on distance from average solution (EDAS). The Hydroxyapatite (HA) weight percentage (wt.%), spindle speed (SPEED) and tool material (TOOL) viz. HSS, Carbide and TiAlN are chosen according to the Taguchi-based experimental array. The objective is to get the best possible machining responses, such as the material removal rate (MRR), mean surface roughness (Ra) and circularity error ([Formula: see text] using the PCA-EDAS hybrid module. The optimal condition is found as the HSS drilling bit, 10%[Formula: see text]wt.%, SPEED-1428[Formula: see text]rpm with an improvement of 30.53%, 21.15% and 41.9% in MRR, Ra and [Formula: see text]-ERROR, respectively. The microstructural investigation scanning electron microscope (SEM) shows the excellent morphology and quality of the drilled hole in the proposed composites. Also, an X-ray diffraction (XRD) analysis of the prepared sample was done to ensure the proper reinforcement. The flexural test shows a significant expansion in the mechanical property due to the presence of HA in PMMA

Author(s):  
D. S. Sai Ravi Kiran ◽  
Alavilli Sai Apparao ◽  
Vempala GowriSankar ◽  
Shaik Faheem ◽  
Sheik Abdul Mateen ◽  
...  

This paper investigates the machinability characteristics of end milling operation to yield minimum tool wear with the maximum material removal rate using RSM. Twenty-seven experimental runs based on Box-Behnken Design of Response Surface Methodology (RSM) were performed by varying the parameters of spindle speed, feed and depth of cut in different weight percentage of reinforcements such as Silicon Carbide (SiC-5%, 10%,15%) and Alumina (Al2O3-5%) in alluminium 7075 metal matrix. Grey relational analysis was used to solve the multi-response optimization problem by changing the weightages for different responses as per the process requirements of quality or productivity. Optimal parameter settings obtained were verified through confirmatory experiments. Analysis of variance was performed to obtain the contribution of each parameter on the machinability characteristics. The result shows that spindle speed and weight percentage of SiC are the most significant factors which affect the machinability characteristics of hybrid composites. An appropriate selection of the input parameters such as spindle speed of 1000 rpm, feed of 0.02 mm/rev, depth of cut of 1 mm and 5% of SiC produce best tool wear outcome and a spindle speed of 1838 rpm, feed of 0.04 mm/rev, depth of cut of 1.81 mm and 6.81 % of SiC for material removal rate.


Author(s):  
Rajesh Kumar Porwal ◽  
Vinod Yadava ◽  
J. Ramkumar

Determination of material removal rate (MRR), tool wear rate (TWR) and hole taper (Ta) is a challenging task for manufacturing engineers from the productivity and accuracy point of view of the symmetrical and nonsymmetrical holes due to hole sinking electro discharge micro machining (HS-EDMM) process. Thus, mathematical models for quick prediction of these aspects are needed because experimental determinations of process performances are always tedious and time consuming. Not only prediction but determination of optimum parameter for optimization of process performance is also required. This paper attempts to apply a hybrid mathematical approach comprising of Back Propagation Neural Network (BPNN) for prediction and Grey Relational Analysis (GRA) coupled with Principal Component Analysis (PCA) for optimization with multiple responses of HS-EDMM of Invar-36. Experiments were conducted to generate dataset for training and testing of the network where input parameters consist of gap voltage, capacitance of capacitor and the resulting performance parameters MRR, TWR and Ta. The results indicate that the hybrid approach is capable to predict process output and optimize process performance with reasonable accuracy under varied operating conditions of HS-EDMM. The proposed approach would be extendable to other configurations of EDMM processes for different material.


Author(s):  
Mathew Kuttolamadom ◽  
Parikshit Mehta ◽  
Laine Mears ◽  
Thomas Kurfess

The objective of this paper is to assess the correlation of volumetric tool wear (VTW) and wear rate of carbide tools on the material removal rate (MRR) of titanium alloys. A previously developed methodology for assessing the worn tool material volume is utilized for quantifying the VTW of carbide tools when machining Ti–6Al–4V. To capture the tool response, controlled milling experiments are conducted at suitable corner points of the recommended feed-speed design space, for constant stock material removal volumes. For each case, the tool material volume worn away, as well as the corresponding volumetric wear profile evolution in terms of a set of geometric coefficients, is quantified—these are then related to the MRR. Further, the volumetric wear rate and the M-ratio (volume of stock removed to VTW) which is a measure of the cutting tool efficiency, are related to the MRR—these provide a tool-life based optimal MRR for profitability. This work not only elevates tool wear from a 1D to 3D concept, but helps in assessing machining economics from a stock material-removal-efficiency perspective as well.


2013 ◽  
Vol 295-298 ◽  
pp. 1289-1292 ◽  
Author(s):  
Kai Huang ◽  
Li Ping Qiu ◽  
Jin Feng Meng ◽  
Dong Wang

By- products are widespread in the crystallization of magnesium ammonia phosphate (MAP) as the differences in reactive conditions which effects the forms and habits of crystals. The study focused on the supernatant from septic tank in order to achieve in-situ treatment. Based on the effluent, the optimization research of initial phosphate concentration and pH was investigated by using single factor analysis. The crystal products with different reaction condition were also characteristiced through the XRD analysis. The experimental results showed that the optimum reactants molar ratio of n(NH4+):n(Mg2+):n(PO43-) were 90:25:1, 4:1.6:1 and 3:1.4:1 when pH value was 9.5 with initial phosphate concentration 8mg/L, 50mg/L and 100mg/L, respectively. It was also observed that the phosphate removal rate increased with increasing the initial phosphate concentration or pH value. As the aging time increased, the removal rate was in parabolic curve with 30 minute at the highest point. The XRD analysis revealed that the best MAP crystal could be produced with initial phosphate concentration 50mg/L and pH 9.0.


2014 ◽  
Vol 592-594 ◽  
pp. 479-483 ◽  
Author(s):  
Hemant Walkar ◽  
Vijaykumar S. Jatti ◽  
T.P. Singh

Electric discharge machining (EDM) is a non-conventional machining process in which material removal take place by a series of electric spark generated between the small gap of both electrode and both immersed in dielectric medium. The gap conditions of EDM significntly affect the stability of machining process. Thus, the machining performance would be improved by removing the debris from the machining gap fastly. In view of this, the objective of present work was to investigate the effect of magnetic field on the material removal rate (MRR) and surface roughness (SR), in conjunction with the variation of electrical parameters like pulse on-off times and gap current, while keeping other electrical parameters and work piece/ tool material constant. Experimental results showed that the magnetic field assisted EDM improves the process stability. Moreover, the EDM process with high efficiency and quality of machined parts could fulfill the requirements of modern manufacturing industries.


Author(s):  
Dr. V. S. Srinivasa Murthy

Abstract: The purpose of this work is to investigate experimentally the surface roughness and MRR while machining of aluminium 2024 alloy which is prepared by powder metallurgical technique. Aluminium 2024 alloy prepared with different composition such as Pure Al, 1.5 W% of Mg and 2-6 % of Cu powders. Powders are blended with ball milling machine according to the composition required and specimens are prepared in square shape die (25*25mm) by applying uniaxial load of 200Mpa. The sintering process was performed at 594 0C for 60 min and cooled at room temperature. SEM and XRD analysis was carried out to know various characteristics like green density, dimensional changes during sintering, sintering density, mechanical properties and microstructures. Finally the Surface roughness and MRR during machining with CNC milling machine at different depth of cuts was also evaluated. Keywords: Aluminium 2024 alloy, surface roughness, MRR, SEM and XRD analysis


2021 ◽  
Author(s):  
M Sankareswaran ◽  
M Vanitha ◽  
P. Rajiv ◽  
A. Anbukumaran

Abstract The current investigation reports on a green route, simple and eco-friendly method for synthesis of silica nanoparticles from Phyllantus emblica. Appropriate characterization techniques were employed to assess the crystalline nature, microstructure, size, purity, elemental composition and stability of as-biosynthesized silica nanoparticles. The XRD analysis showed a wide-ranging peak at 22∘ of 2θ value and proved that the nanoparticles were crystalline nature with 32 nm average size of particles. FT-IR studies confirmed the occurrence of metal oxide group and presence of phyto-molecules namely hydroxyl, amide, and carboxyl functional groups, which were responsible for formation and stabilization of silica nanomaterials. TGA and Zeta potential analysis determined that silica nanoparticles are highly thermostable. EDX analysis revealed the purity of nanomaterials and spectra confirmed that formation of silica nanomaterials (72.97 weight percentage of SiO2 content) with low impurities. SEM analysis shows that the particles are spherical in shape with low agglomeration. This research work concluded that the P. emblica was an excellent and reliable green resource for production of highly stable and potential silica nanoparticles.


Author(s):  
Supriyo Roy ◽  
Kaushik Kumar ◽  
J. Paulo Davim

Machining of hard metals and alloys using Conventional machining involves increased demand of time, energy and cost. It causes tool wear resulting in loss of quality of the product. Non-conventional machining, on the other hand produces product with minimum time and at desired level of accuracy. In the present study, EN19 steel was machined using CNC Wire Electrical discharge machining with pre-defined process parameters. Material Removal Rate and Surface roughness were considered as responses for this study. The present optimization problem is single and as well as multi-response. Considering the complexities of this present problem, experimental data were generated and the results were analyzed by using Taguchi, Grey Relational Analysis and Weighted Principal Component Analysis under soft computing approach. Responses variances with the variation of process parameters were thoroughly studied and analyzed; also ‘best optimal values' were identified. The result shows an improvement in responses from mean to optimal values of process parameters.


2021 ◽  
Author(s):  
Shahryar Malekie ◽  
Hassan Shooli ◽  
Mohammad Amin Hosseini

Abstract This study aimed to introduce new composites, containing polyamide-6 (PA6) and lead monoxide (PbO), to protect against ionizing photon sources used for diagnostic and therapeutic purposes. Five composites, containing various weight percentages of PbO filler (0, 5, 10, 20, and 50%), were developed in this study. Initially, the numerical attenuation value was estimated using XMuDat program by calculating the mass attenuation coefficients at different energy levels. Next, the samples were synthesized based on the melt-mixing method in a laboratory mixing extruder, and their characteristics were determined by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Finally, experimental radiation attenuation tests were carried out. Based on the SEM results, the acceptable filler weight percentage was up to 20%; however, substantial aggregates formation was observed at the highest weight percentage. The results of XRD analysis showed a higher tendency for crystallization by decreasing the amorphous area, while increasing the filler weight percentage. Moreover, the amount of mass loss was monitored at different temperatures, revealing that the filler incorporation improved the thermal durability of the samples. According to the radiation results, a good agreement was observed between the experimental and computational data, except when aggregates formation was substantial. According to the experimental data, by increasing the lead weight percentage from 0% (crude PA6) to 50%, the half-value layer decreased from 3.13 to 0.17 cm at an energy level of 59 keV and from 7.28 to 4.97 cm at an energy level of 662 keV. Considering these promising results, the applicability of PA6/PbO composites for protection against low- and medium-energy ionizing photon sources must be investigated in future studies.


Sign in / Sign up

Export Citation Format

Share Document