scholarly journals Synthesis of ZnO nanorods for piezoelectric resonators and sensors

Author(s):  
A. L. Nikolaev ◽  
M. A. Kazmina ◽  
N. V. Lyanguzov ◽  
K. G. Abdulvakhidov ◽  
E. M. Kaidashev

Efficiency of the piezoelectric chemisensors may be considerably enhanced by use of zinc oxide nanorods as sensing elements. ZnO nanorod arrays being good piezoelectric materials possess large surface area, which provides extra benefits for chemisorption and photodetection. Highly oriented nanorod arrays are typically prepared onto highly crystalline substrates, whereas the nanorods growth onto metal contacts meets significant technological difficulties. In this paper, we report on carbothermal, electrochemical, and hydrothermal techniques of ZnO nanorod arrays synthesis on metal contacts. The optical and structural properties of the obtained nanorods were studied using scanning electron microscopy, X-ray diffraction (XRD), Raman spectroscopy, and luminescence spectroscopy. A reliable technique was developed for obtaining ohmic contact with the grown nanorods. I–U curves of prepared contact were studied. Carbothermal synthesis made it possible to obtain the most crystallinely perfect, homogeneous, and dense arrays of nanorods and control the concentration of point defects by changing the synthesis parameters over a wide range. The electrochemical synthesis demonstrated excellent results for synthesis of ZnO nanorods on the surface of resonator electrodes.

2020 ◽  
Vol 20 (6) ◽  
pp. 3512-3518
Author(s):  
Saleh Khan ◽  
Xiao-He Liu ◽  
Xi Jiang ◽  
Qing-Yun Chen

Highly efficient and effective porous ZnO nanorod arrays were fabricated by annealing ZnO nanorod arrays grown on a substrate using a simple hydrothermal method. The annealing had a positive effect on the nanorod morphology, structure and optical properties. The porosity was closely related to the annealing temperature. After heating at 450 °C, pores appeared on the nanorods. It was demonstrated that the porosity could be exploited to improve the visible light absorption of ZnO and reduce the bandgap from 3.11 eV to 2.99 eV. A combination of improved charge separation and transport of the heat-treated ZnO thus led to an increase in the photoelectrochemical properties. At an irradiation intensity of 100 mW/cm−2, the photocurrent density of the porous nanorod array was approximately 1.3 mA cm−2 at 1.2 V versus Ag/AgCl, which was five times higher than that of the ZnO nanorods. These results revealed the synthesis of promising porous ZnO nanorods for photoelectrochemical applications.


CrystEngComm ◽  
2017 ◽  
Vol 19 (41) ◽  
pp. 6085-6088 ◽  
Author(s):  
Amany Ali ◽  
DongBo Wang ◽  
JinZhong Wang ◽  
ShuJie Jiao ◽  
FengYun Guo ◽  
...  

The ultraviolet luminescence of ZnO nanorods was greatly enhanced through introducing an AlN buffer layer.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Da Zhang ◽  
Yuanyi Wang ◽  
Liang Chen ◽  
Chengjing Xiao ◽  
Jing Feng ◽  
...  

A simple two-step method of growing ZnO nanorod arrays on the surface of BiOI nanosheets was developed under mild environment. The hierarchical structure of ZnO arrays@BiOI nanosheets was characterized by various measurements like X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray detector. The optical absorption of the ZnO arrays@BiOI nanosheets composite was investigated by UV-Vis diffuse reflectance spectra. The photocatalytic degradation of methanol orange under visible light shows that the obtained ZnO arrays@BiOI nanosheets heterostructures exhibit enhanced photocatalytic activity, contrasting to the sum of BiOI nanosheets and ZnO nanorods. The mechanism of the photocatalytic process was discussed. This method of growing ZnO nanorod arrays on other nanosheets also provides a potential method to fabricating other complex structures.


RSC Advances ◽  
2014 ◽  
Vol 4 (84) ◽  
pp. 44452-44456 ◽  
Author(s):  
Y. Yin ◽  
Y. Sun ◽  
M. Yu ◽  
X. Liu ◽  
B. Yang ◽  
...  

Annealing or plasma pre-treating the ZnO seed layer influences the nucleation and hydrothermal growth of ZnO nanorods and their photoluminescence.


2016 ◽  
Vol 675-676 ◽  
pp. 134-137
Author(s):  
Phattharaphong Khamkhom ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Chanunthorn Chananonnawathorn ◽  
Sukon Kalasung ◽  
...  

In this study, we fabricated the zinc oxide (ZnO) nanorods arrays by hydrothermal technique on indium doped tin oxide (ITO) substrate with different concentration of the precursor with zinc nitrate and hexamethyleneteramine (HMTA) in distilled water. Structure, morphology and optical properties of ZnOnanorods on ITO substrate were characterized by x-ray diffractometer, field-emission scanning electron microscope and spectrophotometer, respectively. The ZnO nanorod arrays showing preferentially oriented in the (001) direction and with a wurtzite structure. The scanning electron microscopy results showed that the hexagonal shape ZnO nanorods. It was found that the diameter, length and density of the ZnO nanorods arrays were strongly influenced by the precursor concentration.


2010 ◽  
Vol 123-125 ◽  
pp. 811-814 ◽  
Author(s):  
Yi Su ◽  
Xiao Ping Zou ◽  
Xiang Min Meng ◽  
Gong Qing Teng ◽  
Gang Qiang Yang ◽  
...  

We are reporting here on an inexpensive and facile fabrication method for ZnO nanorod arrays by hydrothermal growth at low temperature (90°C). In our experiment, ZnO nanostructures were grown on glass substrate using an equimolar (0.1M) aqueous solution of Zn(NO3)2•6H2O (zinc nitrate hexahydrate) and C6H12N4 (HMTA) as precursors solution, and using ammonia solution to controlling the pH levels. It enable easily obtained arrayed ZnO nanorods on substrate, and nanowires which grown on nanorod arrays were identified after about 1 month in the air. The growth process of nanorods and the formation mechanism of nanowires were investigated.


2015 ◽  
Vol 44 (16) ◽  
pp. 7127-7130 ◽  
Author(s):  
Yiming Tang ◽  
Jung-Ho Yun ◽  
Lianzhou Wang ◽  
Rose Amal ◽  
Yun Hau Ng

Photosensitized ZnO nanorods uniformly coated with CuInS2 nanoparticles from sequentially pulsed-electrodeposition yielded superior charge transfer ability and great enhancement in photoelectrochemical performance under visible light irradiation.


2015 ◽  
Vol 3 (31) ◽  
pp. 15876-15881 ◽  
Author(s):  
Yiming Tang ◽  
Peng Wang ◽  
Jung-Ho Yun ◽  
Rose Amal ◽  
Yun Hau Ng

High quality coating of vertically aligned ZnO nanorods with CuInS2 nanoparticles is achieved by a pulse-regulated electrodeposition method.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jian Shang ◽  
Ye Sun ◽  
Teng Zhang ◽  
Zhen Liu ◽  
Hong Zhang

Silver (Ag) has broad-spectrum antibacterial properties and is widely used in various fields, including in antibacterial coatings for orthopedic implants. For reasons of cost and cytotoxicity, improvement of the antibacterial efficiency of Ag is necessary. The scientific community has also shown a strong enthusiasm in this research area. In this paper, ZnO nanorod arrays were prepared on a titanium (Ti) substrate by seed-assisted hydrothermal method and Ag nanoparticles were deposited by magnetron sputtering to obtain Ag nanoparticle-decorated ZnO nanorod arrays (ZnO nanorods/Ag nanoparticles). The antibacterial properties of ZnO nanorods/Ag nanoparticles against Pseudomonas aeruginosa were systematically studied by agar diffusion method and were compared with other samples such as ZnO nanorod arrays and ZnO seed layer/Ag nanoparticles. The experimental results showed that ZnO nanorods/Ag nanoparticles displayed significantly higher antibacterial properties against Pseudomonas aeruginosa than other samples, including ZnO nanorod arrays and ZnO seed layer/Ag nanoparticles. These superior antibacterial properties originated predominantly from the morphological structure of ZnO nanorods, which optimized the particle size and distribution of Ag nanoparticles, greatly improving their antimicrobial efficiency. The synergistic antibacterial properties of Ag nanoparticles and ZnO nanorods make Ag nanoparticle-decorated ZnO nanorod arrays a promising candidate for antibacterial coating of orthopedic implants.


2015 ◽  
Vol 1131 ◽  
pp. 53-59
Author(s):  
Suttinart Noothongkaew ◽  
Supakorn Pukird ◽  
Worasak Sukkabot ◽  
Ki Seok An

ZnO nanorod arrays were synthesized with simple chemical vapor deposition technique with template without using catalyst by controlling the growth time and condensation growth. The surface morphology of nanostructure were characterized by using field emission scanning electron microscopy (FE-SEM), we found that the ZnO nanorod arrays were uniformly covered on substrate. The extremely strong ZnO (0002) peaks were observed by using X-ray diffraction (XRD), shown the preferred (0001) orientation and high crystalline quality of the ZnO nanostructures. The optical properties were investigated by using photoluminescence (PL). These results showed the contribution of green-yellow emission attributed to the strong inner reflection and scattering. Our results indicating that the uniform ZnO nanorods arrays can be synthesized by using a simplified method. Furthermore, they will be implemented as application for nanodevice fabrication or for gas sensors and solar cells.


Sign in / Sign up

Export Citation Format

Share Document