IMPROVEMENT OF MECHANICAL AND THERMAL PROPERTIES OF CFRP LAMINATES USING MICRO-FIBRILLATED CELLULOSE

2012 ◽  
Vol 06 ◽  
pp. 622-627 ◽  
Author(s):  
HYOJIN KIM ◽  
TADASHI SUZUKI ◽  
KENICHI TAKEMURA

The aim of this study is improvement of mechanical and thermal properties of plain woven carbon fiber (CF) reinforced epoxy with addition of MFC as the additive. Carbon fiber/epoxy laminates with addition 0.3, 0.5, 0.7 and 1wt% of MFC were characterized by flexural test, DSC and TMA. The result represented that the flexural strength improved slightly at 0.3 and 0.5 wt% of MFC, but flexural modulus was not changed, respectively. The glass transition temperature of MFC-CFRP laminates showed the increase according to increase of MFC addition at 0.7 and 1.0 wt%. The coefficient of thermal expansion was decrease by 0.7 wt% of MFC addition.

2017 ◽  
Vol 737 ◽  
pp. 262-268
Author(s):  
Hye Ryun Lee ◽  
Moon Il Kim ◽  
Hye Ryun Na ◽  
Choong Sun Lim ◽  
Bong Kuk Seo

Epoxy/silica composites were prepared using aminopropyl triethoxysilane (APTES)-modified silica nanoparticles in the sol state. Different sizes of silica particles were synthesized and they were applied into the epoxy/silica composites with different compositions. The mechanical and thermal properties of the composites were investigated and compared with those of pristine epoxy composite. The structure and morphology of the modified silica nanoparticles and epoxy/silica composites were analyzed using field emission scanning electron microscope. The flexural modulus and tensile strength of the epoxy/silica composites were investigated by universal test machine (UTM). Also, glass transition and thermal stability were investigated using thermomechanical analyzer (TMA). Sizes of silica particles in sol state were controlled by using different concentration of the accelerator. The tensile strength of epoxy/silica composites containing 20 wt% of 30 nm silica was found to be 37.98 MPa. In addition, the glass transition temperature (Tg) decreased with increasing silica particle sizes.


2018 ◽  
Vol 52 (29) ◽  
pp. 4075-4085 ◽  
Author(s):  
Ronald Joven ◽  
Bob Minaie

Thermal expansion, specific heat, diffusivity, and conductivity of carbon fiber-epoxy composites were studied using autoclave and out-of-autoclave prepregs with three different fabric weaves including unidirectional, eight-harness satin, and plain weave. For this purpose, light flash analysis was utilized where the implications of using anisotropic materials were studied. Results indicated that density, thermal expansion, conductivity, and diffusivity were strongly influenced by the fiber configuration of the sample. This phenomenon was attributed to the difference in fiber volume fraction induced by the different weaves of the fabric. Nevertheless, specific heat was similar for all the samples regardless of fabric type or resin formulation. Finally, thermal properties of tetrafluoroethylene release film were presented to analyze the tool-part heat transfer during manufacturing. This release film showed thermal conductivity three times lower than carbon fiber-epoxy samples indicating that the film could be an important contributor to thermal lag between tool and part.


2005 ◽  
Vol 13 (5) ◽  
pp. 479-488 ◽  
Author(s):  
Sang Muk Lee ◽  
Seong Ok Han ◽  
Donghwan Cho ◽  
Won Ho Park ◽  
Seung Goo Lee

The influence of chopped fibre length on the mechanical and thermal properties of silk fibre ( Bombix mori) reinforced poly(butylene succinate) (PBS) biocomposites has been investigated in terms of tensile and flexural properties, thermal stability, thermal expansion, and dynamic mechanical properties. The chopped fibre lengths studied were 3.2 mm, 6.4 mm, 12.7 mm, and 25.4 mm. The results demonstrate that chopped silk fibres play an effective role in improving the mechanical properties of PBS in the present system. At a fixed fibre loading of 40 wt%, the tensile strength and modulus of the PBS control were improved by 69% and 228%, respectively, in comparison with those of the biocomposite reinforced with 25.4 mm silk fibres. The flexural strength and modulus of PBS were also greatly improved by 167% and 323%, respectively. The thermal properties of PBS resin increased when incorporating chopped silk fibres in the composite matrix. The biocomposites had much lower linear coefficient of thermal expansion (CTE) values and higher storage moduli than the PBS controls above the glass transition region, especially with reinforcing silk fibres of 25.4 mm long.


Carbon ◽  
2019 ◽  
Vol 150 ◽  
pp. 554
Author(s):  
Xue-ping Wu ◽  
Jun-shuai Zhao ◽  
Xu Rao ◽  
Xian-long Zhang ◽  
Yu-cheng Wu ◽  
...  

2019 ◽  
Vol 54 (17) ◽  
pp. 2365-2376 ◽  
Author(s):  
MO Durowoju ◽  
TB Asafa ◽  
ER Sadiku ◽  
S Diouf ◽  
MB Shongwe ◽  
...  

Graphite–aluminium (Gr–Al) composites are being used for diverse engineering applications because of their light weight, good electrical conductivity and thermal properties. However, their applications are limited by high coefficient of thermal expansion and low microhardness values which can be enhanced by adding cheap and efficient fillers. This paper reports the effect of addition of eggshell (ES) particles on the properties of sintered Gr–Al-based composites. Five different composites (Gr–Al, Gr–Al  +  20 wt.%Si, Gr–Al + 20 wt.%SiC, Gr–Al + 20Si wt.% + 20 wt.%ES and Gr–Al + 20SiC wt.% + 20 wt.%ES) were sintered at a temperature of 540 ℃, holding time of 10 min, heating rate of 52 ℃/min and pressure of 50 MPa using spark plasma sintering system. The sintered samples were characterized based on morphology, microhardness, relative density, coefficient of thermal expansion and electrical conductivity. Based on SEM images, graphite particles of flake-like structure were largely undeformed while Al particles were smaller, round and irregular in shape and fairly uniformly distributed in the composites. The microhardness value of sintered Gr–Al + 20 wt.%SiC + 20 wt.%ES composite was 39.55 HV compared to 30.46 HV for Gr–Al, the least of the samples. The Gr–Al + 20 wt.%SiC + 20 wt.%ES composite also has a very low thermal expansion coefficient (0.98 × 10−5/K) but lowest electrical conductivity at temperature beyond 150 ℃. Highest densification and minimum relative density (94%) were obtained in Gr–Al + 20 wt.%Si + 20 wt.%ES composite. These enhanced performances are largely due to the incorporation of ES particles. This study therefore demonstrated that ESs particles enhanced microhardness and lowered thermal expansion of Gr–Al-based composites which have promising applications in industries especially for thermal management.


2012 ◽  
Vol 562-564 ◽  
pp. 43-46
Author(s):  
Chun Ling Xin ◽  
Gang Li ◽  
Xiao Ping Yang ◽  
Ya Dong He

Polybenzoxazine was one of the most widely employed matrix for advanced composites, due to their low viscosity, good dimensional stability, high glass transition temperature (Tg) and wide molecular design flexibility. To obtain high perfomance resin matrix, a fundamental understanding of the formation of crosslinking network structure and the relationship between structure and properties was essential. Therefore, the blends of benzoxazine precursor with different functionality were designed to achieve various network molecular architectures, and the effects of inhomogeneous structure of polybenzoxazine on mechanical and thermal properties were investigated. The bifunctional benzoxazine precursor (BA-a) based on bisphenol-A, formaldehyde and aniline, and the monofunctional benzoxazine monomer (Ph-a) based on phenol, formaldehyde and aniline were synthesized respectively. The blends of BA-a and Ph-a, in which the mole ratio was 1:0, 2:1, 1:1 and 1:2, repectively, were thermally cured through ring-opening reaction to obtain polybenzoxazines with various network structures. The fracture surface morphology of various polybenzoxazines was observed by atomic force microscopy (AFM). The hard phase with highly crosslinking density was dispersed in the soft phase with slightly crosslinking density, which led to the generation of inhomogeneous structure of polybenzoxazine. Dynamic mechanical thermal analysis (DMTA) of carbon fiber reinforced polybenzoxazine showed two glass transition temperatures (Tg), which corresponded to the soft phase and hard phase, respectively.With increasing the mole ratio of Ph-a, the increase of hard phase resulted in the enahncement of flexural modulus of polybenzoxazine, whereas the tensile and flexural strength of polybenzoxazine decreased due to the reduction of the crosslinking density of soft phase. Derivative thermogravimetric (DTG) analysis exhibited three major degradation steps, which characterized the decomposition, weight-loss and charring, respectively. Thermogravimetric analysis (TGA) showed that the onset degradation temperature and char yield at 850 oC increased with the increase of Ph-a mole ratio, indicating higher thermal stability and lower decomposition rate, which was attributed to the increase of hard phase with highly crosslinking density.


2019 ◽  
Vol 31 (9-10) ◽  
pp. 1132-1139
Author(s):  
Zhidong Ren ◽  
Sijia Hao ◽  
Yue Xing ◽  
Cheng Yang ◽  
Shenglong Dai

Asymmetric 2-(4′-maleimido)phenyl-2-(4′-maleimidophenoxyl)phenylbutane (EBA-BMI) was successfully mixed with N, N′-(4,4′-diphenylmethane)bismaleimide (DDM-BMI) to prepare the matrix resins for high-temperature fiber-reinforced polymeric composites (glass transition temperature ( Tg) > 400°C). Experimental results imply that DDM-BMI/EBA-BMI (DE-BMIs) show excellent melting performance with wide processing temperature window and low molten viscosity, suggesting excellent compatibility between DDM-BMI and EBA-BMI. For example, the viscosity of DE-BMI41 (DDM-BMI/EBA-BMI, 4/1) is about 474–51 mPa·s in the temperature range of 148–180 °C. In addition, cured DE-BMIs represent remarkable thermal properties with Tg over 400°C, under which the storage modulus could still reach as high as 3.2 GPa. Meanwhile, the coefficient of thermal expansion of these cured resins is about 36–40 ppm °C−1 at 50–250°C, and the 5% weight loss temperature is about 470°C.


Sign in / Sign up

Export Citation Format

Share Document