scholarly journals PREDICTION OF "S" CHARACTERISTICS OF A PUMP-TURBINE WITH SMALL OPENING BASED ON V2F MODEL

2012 ◽  
Vol 19 ◽  
pp. 417-423 ◽  
Author(s):  
JINTAO LIU ◽  
SHUHONG LIU ◽  
YULIN WU ◽  
YUEKUN SUN ◽  
ZHIGANG ZUO

The characteristic of a pump-turbine during the whole starting or stopping period couldn't be calculated accurately by CFD method and most of turbulence models were found inaccurate in the calculation of small opening condition, so a proper turbulence model was needed for the further study of pump-turbine. V2F model which was valid to the solid wall and SST k-ω model were used to calculate the pump-turbine with two openings that one was a small opening and the other was large opening. Results showed that V2F model can be used to simulate characteristics of pump-turbine in the whole opening range and the SST k-ω model can be used only for large openings. Results of V2F model are accuracy and it realizes the real flow in the near wall region. Results of V2F model can obtain small vortexes and some complex flow phenomenon and they are much different from results of SST k-ω model. The V2F model might be used to simulate the starting or stopping period of a pump-turbine.

Author(s):  
Zhou Daqing ◽  
Bo Qu ◽  
Zheng Yuan

In the paper, CFD method is applied to investigate model propeller turbine performance under different guide vane opening. First, the whole passage geometric models of model propeller turbine have been built with 0° runner blade under five kinds of guide vane opening, and subdivided with about 1.78 million cells of unstructured mesh. Then, three dimensional turbulent flow computations are made at the water head of H = 1m and the runner speed of n = 217.4 r/min, with the two turbulent models, RNG k-ε and Spalart-Allmadas. Furthermore, the curves of moment value and axial hydraulic thrust value are plotted and compared with experimental curves, which shows that numerical results agree well with experimental data, and Spalart-Allmadas model has better precision than RNG k-ε model. Finally, the flow fields of different parts in the turbine passage are displayed and analyzed respectively under the large, normal and small guide vane opening, which shows the fact that the rotating direction of vortex in the axial diffuse of draft tube is opposite by comparing the large opening with the small opening, and the flow field is in disorder and unsteady especially under the small opening. On the whole, CFD method has many unique advantages and has played more and more important roles on the investigations of hydro turbine performance.


2011 ◽  
Vol 413 ◽  
pp. 520-523
Author(s):  
Cai Xia Luo

The Stress Distribution in the Connection of the Spherical Shell and the Opening Nozzle Is Very Complex. Sharp-Angled Transition and Round Transition Are Used Respectively in the Connection in the Light of the Spherical Shell with the Small Opening and the Large One. the Influence of the Two Connecting Forms on Stress Distribution Is Analyzed by Establishing Finite Element Model and Solving it. the Result Shows there Is Obvious Stress Concentration in the Connection. Round Transition Can Reduce the Maximum Stress in Comparison with Sharp-Angled Transition in both Cases of the Small Opening and the Large Opening, Mainly Reducing the Bending Stress and the Peak Stress, but Not the Membrane Stress. the Effect of Round Transition on Reducing Stress Was Not Significant. so Sharp-Angled Transition Should Be Adopted in the Connection when a Finite Element Model Is Built for Simplification in the Future.


Author(s):  
R. S. Amano ◽  
Krishna Guntur ◽  
Jose Martinez Lucci

It has been a common practice to use cooling passages in gas turbine blade in order to keep the blade temperatures within the operating range. Insufficiently cooled blades are subject to oxidation, to cause creep rupture, and even to cause melting of the material. To design better cooling passages, better understanding of the flow patterns within the complicated flow channels is essential. The interactions between secondary flows and separation lead to very complex flow patterns. To accurately simulate these flows and heat transfer, both refined turbulence models and higher-order numerical schemes are indispensable for turbine designers to improve the cooling performance. Power output and the efficiency of turbine are completely related to gas firing temperature from chamber. The increment of gas firing temperature is limited by the blade material properties. Advancements in the cooling technology resulted in high firing temperatures with acceptable material temperatures. To better design the cooling channels and to improve the heat transfer, many researchers are studying the flow patterns inside the cooling channels both experimentally and computationally. In this paper, the authors present the performance of three turbulence models using TEACH software code in comparison with the experimental values. To test the performance, a square duct with rectangular ribs oriented at 90° and 45° degree and placed at regular intervals. The channel also has bleed holes. The normalized Nusselt number obtained from simulation are validated with that of experiment. The Reynolds number is set at 10,000 for both the simulation and experiment. The interactions between secondary flows and separation lead to very complex flow patterns. To accurately simulate these flows and heat transfer, both refined turbulence models and higher-order numerical schemes are indispensable for turbine designers to improve the cooling performance. The three-dimensional turbulent flows and heat transfer are numerically studied by using several different turbulence models, such as non-linear low-Reynolds number k-omega and Reynolds Stress (RSM) models. In k-omega model the cubic terms are included to represent the effects of extra strain-rates such as streamline curvature and three-dimensionality on both turbulence normal and shear stresses. The finite volume difference method incorporated with the higher-order bounded interpolation scheme has been employed in the present study. The outcome of this study will help determine the best suitable turbulence model for future studies.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Sulistiya Sulistiya ◽  
Alief Sadlie Kasman

AbstractNumerical simulation using Computational Fluid Dynamics (CFD) method is one way of predicting airflow characteristics on the model. This method is widely used because it is relatively inexpensive and faster in getting desired results compared with performing direct testing. The correctness of a computational simulation output is highly dependent on the input and how it was processed. In this paper, simulation is done on Onera M6 Wing, to investigate the effect of a turbulence model’s application on the accuracy of the computational result. The choice of Onera M6 Wing as a simulation’s model is due to its extensive database of testing results from various wind tunnels in the world. Among Turbulence models used are Spalart-Allmaras, K-Epsilon, K-Omega, and SST.Keywords: CFD, fluent, Model, Turbulence, Onera M6, Spalart-Allmaras, K-Epsilon, K-Omega, SST.AbstraksSimulasi numerik dengan menggunakan metode Computational Fluid Dynamics (CFD) merupakan salah satu cara untuk memprediksi karakteristik suatu aliran udara yang terjadi pada model. Metode ini banyak digunakan karena sifatnya yang relatif murah dan cepat untuk mendapatkan hasil dibandingkan dengan melakukan pengujian langsung. Benar tidak hasil sebuah simulasi komputasi sangat tergantung pada inputan yang diberikan serta cara memproses data inputan tersebut. Pada tulisan ini dilakukan simulasi dengan menggunakan sayap onera M6 dengan tujuan untuk mengetahui pengaruh penggunaan model turbulensi terhadap keakuratan hasil komputasi. Pilihan sayap onera M6 sebagai model simulasi dikarenakan model tersebut sudah memiliki database hasil pengujian yang cukup lengkap dan sudah divalidasi dari berbagai terowongan angin di dunia. Model turbulensi yang digunakan diantaranya Spalart-Allmaras, K-Epsilon, K-Omega dan SST.Kata Kunci : CFD, fluent, Model, Turbulensi, Onera M6, Spalart-Allmaras, K-Epsilon, K-Omega, SST.


2020 ◽  
pp. 46-53
Author(s):  
Jakub Mularski ◽  
Amit Arora ◽  
Muhammad Azam Saeed ◽  
Łukasz Niedźwiecki ◽  
Samrand Saeidi

The paper regards the impact of four different turbulence models on the air flow pattern in a confined rectangular space. The following approaches are analyzed. The Baseline (BSL) Reynolds model, the Speziale-Sarkar-Gatzki (SSG) Reynolds model, the Menter's shear-stress transport (SST) model and the basic k-ε model. Computational fluid dynamics (CFD) results are compared with the experimental measurements in four different planes. The Reynolds number for the given conditions is equal to 5000. The k-ε model yielded the most accurate results with regard to the experimental data but its reliability decreased near the wall region. With respect to the other models, it was also found that the k-ε approach generated the least circulating flow.


Author(s):  
Naseem Uddin ◽  
S. O. Neumann ◽  
B. Weigand

Turbulent impinging jet is a complex flow phenomenon involving free jet, impingement and subsequent wall jet development zones; this makes it a difficult test case for the evaluation of new turbulence models. The complexity of the jet impingement can be further amplified by the addition of the swirl. In this paper, results of Large Eddy Simulations (LES) of swirling and non-swirling impinging jet are presented. The Reynolds number of the jet based on bulk axial velocity is 23000 and target-to-wall distance (H/D) is two. The Swirl numbers (S) of the jet are 0,0.2, 0.47. In swirling jets, the heat transfer at the geometric stagnation zone deteriorates due to the formation of conical recirculation zone. It is found numerically that the addition of swirl does not give any improvement for the over all heat transfer at the target wall. The LES predictions are validated by available experimental data.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anuj Kumar Shukla ◽  
Anupam Dewan

Purpose Convective heat transfer features of a turbulent slot jet impingement are comprehensively studied using two different computational approaches, namely, URANS (unsteady Reynolds-averaged Navier–Stokes equations) and SAS (scale-adaptive simulation). Turbulent slot jet impingement heat transfer is used where a considerable heat transfer enhancement is required, and computationally, it is a quite challenging flow configuration. Design/methodology/approach Customized OpenFOAM 4.1, an open-access computational fluid dynamics (CFD) code, is used for SAS (SST-SAS k-ω) and URANS (standard k-ε and SST k-ω) computations. A low-Re version of the standard k-ε model is used, and other models are formulated for good wall-refined calculations. Three turbulence models are formulated in OpenFOAM 4.1 with second-order accurate discretization schemes. Findings It is observed that the profiles of the streamwise turbulence are under-predicted at all the streamwise locations by SST k-ω and SST SAS k-ω models, but follow similar trends as in the reported results. The standard k-ε model shows improvements in the predictions of the streamwise turbulence and mean streamwise velocity profiles in the zone of outer wall jet. Computed profiles of Nusselt number by SST k-ω and SST-SAS k-ω models are nearly identical and match well with the reported experimental results. However, the standard k-ε model does not provide a reasonable profile or quantification of the local Nusselt number. Originality/value Hybrid turbulence model is suitable for efficient CFD computations for the complex flow problems. This paper deals with a detailed comparison of the SAS model with URANS and LES for the first time in the literature. A thorough assessment of the computations is performed against the results reported using experimental and large eddy simulations techniques followed by a detailed discussion on flow physics. The present results are beneficial for scientists working with hybrid turbulence models and in industries working with high-efficiency cooling/heating system computations.


2007 ◽  
Author(s):  
Yutaka Masuyama ◽  
Yusuke Tahara ◽  
Toichi Fukasawa ◽  
Naotoshi Maeda

Database of full-scale three-dimensional sail shapes are presented with the aerodynamic coefficients for the upwind condition of IMS type sails. Three-dimensional shape data are used for the input of numerical calculations and the results are compared with the measured sail performance. The sail shapes and performance are measured using a sail dynamometer boat Fujin. The Fujin is a 34-foot LOA boat, in which load cells and charge coupled devices (CCD) cameras are installed to measure the sail forces and shapes simultaneously. The sailing conditions of the boat, such as boat speed, heel angle, wind speed, wind angle, and so on, are also measured. The tested sail configurations are as follows: mainsail with 130% jib, mainsail with 75% jib and mainsail alone. Sail shapes are measured at several height positions. The measured shape parameters are chord length, maximum draft, maximum draft position, entry angle at the luff and exit angle at the leech. From these parameters three-dimensional coordinates of the sails are calculated by interpolation. These three-dimensional coordinates are tabulated with the aerodynamic coefficients. Numerical calculations are performed using the measured sail shapes. The calculation methods are of two types; Reynolds-averaged Navier-Stokes (RANS)-based CFD and vortex lattice methods (VLM). A multi-block RANS-based CFD method was developed by one of the authors and is capable of predicting viscous flows and aerodynamic forces for complicated sail configuration for upwind as well as downwind conditions. Important features of the numerical method are summarized as follows: a Finite- Analytic scheme to discretize transport equations, a PISO type velocity-pressure coupling scheme, multi-block domain decomposition capability, and several choices of turbulence models depending on flows of interest. An automatic grid generation scheme is also included. Another calculation method, the vortex lattice method is also adopted. In this case, step-by-step calculations are conducted to attain the steady state of the sail in steady wind. Wake vortices are generated step-by-step, which flow in the direction of the local velocity vector. These calculated sail forces are compared with the measured one, and the validity of the numerical method is studied. The sail shape database and comparison with numerical calculations will provide a good benchmark for the sail performance analysis of the upwind condition of IMS type sails.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3330
Author(s):  
Milan Sedlář ◽  
Pavel Procházka ◽  
Martin Komárek ◽  
Václav Uruba ◽  
Vladislav Skála

This article presents results of the experimental research and numerical simulations of the flow in a pumping system’s discharge object with the welded siphon. The laboratory simplified model was used in the study. Two stationary flow regimes characterized by different volume flow rates and water level heights have been chosen. The study concentrates mainly on the regions below and behind the siphon outlet. The mathematical modelling using advanced turbulence models has been performed. The free-surface flow has been carried out by means of the volume-of-fluid method. The experimental results obtained by the particle image velocimetry method have been used for the mathematical model validation. The evolution and interactions of main flow structures are analyzed using visualizations and the spectral analysis. The presented results show a good agreement of the measured and calculated complex flow topology and give a deep insight into the flow structures below and behind the siphon outlet. The presented methodology and results can increase the applicability and reliability of the numerical tools used for the design of the pump and turbine stations and their optimization with respect to the efficiency, lifetime and environmental demands.


Sign in / Sign up

Export Citation Format

Share Document