scholarly journals Electric Field Modulation of Spin Accumulation in Nb-doped SrTiO3 with Ni/AlOx Spin Injection Contacts

SPIN ◽  
2018 ◽  
Vol 08 (01) ◽  
pp. 1840004 ◽  
Author(s):  
A. Das ◽  
S. T. Jousma ◽  
T. Banerjee

We demonstrate an electric field control of spin lifetime at room temperature, across a semiconducting interface of Nb:STO using Ni/AlOx as spin injection contacts. We achieve this by a careful tailoring of the potential landscape in Nb:STO, driven by the strong response of the intrinsically large dielectric permittivity in STO to electric fields. The built-in electric field at the Schottky interface with Nb:STO tunes the intrinsic Rashba spin–orbit fields leading to a bias dependence of the spin lifetime in Nb:STO. Such an electric field driven modulation of spin accumulation has not been reported earlier using conventional semiconductors. This not only underpins the necessity of a careful design of the spin injection contacts but also establishes the importance of Nb:STO as a rich platform for exploring spin–orbit driven phenomena in complex oxide based spintronic devices.

MRS Bulletin ◽  
2008 ◽  
Vol 33 (11) ◽  
pp. 1047-1050 ◽  
Author(s):  
Nicola A. Spaldin ◽  
R. Ramesh

AbstractIn this article, we review current research efforts to control the magnetic behavior of complex oxide thin films using electric fields. After providing fundamental definitions of magnetoelectric response, we survey materials, architectures, and mechanisms that exhibit promise for such electric-field control of magnetism. Finally, we mention ideas for future research and discuss prospects for the field.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Kapildeb Dolui ◽  
Su Ying Quek

Abstract Two-dimensional (2D) materials are well-known to exhibit interesting phenomena due to quantum confinement. Here, we show that quantum confinement, together with structural anisotropy, result in an electric-field-tunable Dirac cone in 2D black phosphorus. Using density functional theory calculations, we find that an electric field, E ext, applied normal to a 2D black phosphorus thin film, can reduce the direct band gap of few-layer black phosphorus, resulting in an insulator-to-metal transition at a critical field, E c . Increasing E ext beyond E c can induce a Dirac cone in the system, provided the black phosphorus film is sufficiently thin. The electric field strength can tune the position of the Dirac cone and the Dirac-Fermi velocities, the latter being similar in magnitude to that in graphene. We show that the Dirac cone arises from an anisotropic interaction term between the frontier orbitals that are spatially separated due to the applied field, on different halves of the 2D slab. When this interaction term becomes vanishingly small for thicker films, the Dirac cone can no longer be induced. Spin-orbit coupling can gap out the Dirac cone at certain electric fields; however, a further increase in field strength reduces the spin-orbit-induced gap, eventually resulting in a topological-insulator-to-Dirac-semimetal transition.


2020 ◽  
Vol 6 (40) ◽  
pp. eabd2613
Author(s):  
Tianxiang Nan ◽  
Yeonbae Lee ◽  
Shihao Zhuang ◽  
Zhongqiang Hu ◽  
James D. Clarkson ◽  
...  

Controlling magnetization dynamics is imperative for developing ultrafast spintronics and tunable microwave devices. However, the previous research has demonstrated limited electric-field modulation of the effective magnetic damping, a parameter that governs the magnetization dynamics. Here, we propose an approach to manipulate the damping by using the large damping enhancement induced by the two-magnon scattering and a nonlocal spin relaxation process in which spin currents are resonantly transported from antiferromagnetic domains to ferromagnetic matrix in a mixed-phased metallic alloy FeRh. This damping enhancement in FeRh is sensitive to its fraction of antiferromagnetic and ferromagnetic phases, which can be dynamically tuned by electric fields through a strain-mediated magnetoelectric coupling. In a heterostructure of FeRh and piezoelectric PMN-PT, we demonstrated a more than 120% modulation of the effective damping by electric fields during the antiferromagnetic-to-ferromagnetic phase transition. Our results demonstrate an efficient approach to controlling the magnetization dynamics, thus enabling low-power tunable electronics.


2016 ◽  
Vol 848 ◽  
pp. 675-681 ◽  
Author(s):  
Yuan Jun Yang ◽  
Bin Hong ◽  
Meng Meng Yang ◽  
Liang Xin Wang ◽  
Hao He ◽  
...  

The giant converse magnetoelectric coupling (GME) was observed in the multiferroic Co40Fe40B20/(011)-0.7Pb (Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures at room temperature in this investigation. A tunability of magnetization by electric field along the [100] direction was up to-66.7% at-10 Oe bias magnetic fields. Moreover, the non-volatile magnetization switching was found after removal of bipolar electric field. The corresponding remanent magnetic states even without the assistance of bias magnetic fields were stable and could be modulated synchronously by a sequence of pulse electric fields. The 90o rotation of easy axis and non-symmetrical ferroelastic domain switching contributed to the above results. This work is of great significance in designing ultra-low power and non-volatile magnetoelectric memories and other spintronic devices at room temperature.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Rahul Mishra ◽  
Farzad Mahfouzi ◽  
Dushyant Kumar ◽  
Kaiming Cai ◽  
Mengji Chen ◽  
...  

2014 ◽  
Vol 104 (21) ◽  
pp. 212106 ◽  
Author(s):  
A. M. Kamerbeek ◽  
E. K. de Vries ◽  
A. Dankert ◽  
S. P. Dash ◽  
B. J. van Wees ◽  
...  

Author(s):  
Xiaomin Cui ◽  
Shaojie Hu ◽  
Takashi Kimura

Abstract Lateral spin valves are ideal nanostructures for investigating spin-transport physics phenomena and promoting the development of future spintronic devices owing to dissipation-less pure spin current. The magnitude of the spin accumulation signal is well understood as a barometer for characterizing spin current devices. Here, we develop a novel fabrication method for lateral spin valves based on ferromagnetic nanopillar structures using a multi-angle deposition technique. We demonstrate that the spin-accumulation signal is effectively enhanced by reducing the lateral dimension of the nonmagnetic spin channel. The obtained results can be quantitatively explained by the confinement of the spin reservoir by considering spin diffusion into the leads. The temperature dependence of the spin accumulation signal and the influence of the thermal spin injection under a high bias current are also discussed.


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Haichao Yu ◽  
Feng Tang ◽  
Jingjun Wu ◽  
Zao Yi ◽  
Xin Ye ◽  
...  

In intense-light systems, the traditional discrete optical components lead to high complexity and high cost. Metasurfaces, which have received increasing attention due to the ability to locally manipulate the amplitude, phase, and polarization of light, are promising for addressing this issue. In the study, a metasurface-based reflective deflector is investigated which is composed of silicon nanohole arrays that confine the strongest electric field in the air zone. Subsequently, the in-air electric field does not interact with the silicon material directly, attenuating the optothermal effect that causes laser damage. The highest reflectance of nanoholes can be above 99% while the strongest electric fields are tuned into the air zone. One presentative deflector is designed based on these nanoholes with in-air-hole field confinement and anti-damage potential. The 1st order of the meta-deflector has the highest reflectance of 55.74%, and the reflectance sum of all the orders of the meta-deflector is 92.38%. The optothermal simulations show that the meta-deflector can theoretically handle a maximum laser density of 0.24 W/µm2. The study provides an approach to improving the anti-damage property of the reflective phase-control metasurfaces for intense-light systems, which can be exploited in many applications, such as laser scalpels, laser cutting devices, etc.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document