Recent Progress in Atomic Layer Deposition of Multifunctional Oxides and Two-Dimensional Transition Metal Dichalcogenides

2016 ◽  
Vol 04 (04) ◽  
pp. 1640010 ◽  
Author(s):  
Hongfei Liu

Atomic layer deposition (ALD) has long been developed for conformal coating thin films on planar surfaces and complex structured substrates based on its unique sequential process and self-limiting surface chemistry. In general, the coated thin films can be dielectrics, semiconductors, conductors, metals, etc., while the targeted surface can vary from those of particles, wires, to deep pores, through holes, and so on. The ALD coating technique, itself, was developed from gas-phase chemical vapor deposition, but now it has been extended even to liquid phase coating/growth. Because the thickness of ALD growth is controlled in atomic level ([Formula: see text]0.1[Formula: see text]nm), it has recently been employed for producing two-dimensional (2D) materials, typically semiconducting nanosheets of transition metal dichalcogenides (TMDCs). In this paper, we briefly introduce recent progress in ALD of multifunctional oxides and 2D TMDCs with the focus being placed on suitable ALD precursors and their ALD processes (for both binary compounds and ternary alloys), highlighting the remaining challenges and promising potentials.

2021 ◽  
Author(s):  
Yuanyuan Cao ◽  
Sha Zhu ◽  
Julien Bachmann

The two-dimensional material and semiconducting dichalcogenide hafnium disulfide is deposited at room temperature by atomic layer deposition from molecular precursors dissolved in hexane.


Nanoscale ◽  
2021 ◽  
Author(s):  
Anton Brown ◽  
John Greenwood ◽  
César Lockhart de la Rosa ◽  
Miriam Candelaria Rodriguez Gonzalez ◽  
Ken Verguts ◽  
...  

The integration of graphene, and more broadly two-dimensional materials, into devices and hybrid materials often requires the deposition of thin films on their usually inert surface. As a result, strategies...


Author(s):  
T. W. Scharf ◽  
S. V. Prasad ◽  
M. T. Dugger ◽  
T. M. Mayer

Tungsten disulphide (WS2) and molybdenum disulfide (MoS2), which belong to the family of transition metal dichalcogenides, are well known for their solid lubricating behavior. Thin films of MoS2 and WS2 exhibit extremely low coefficient of friction (COF ∼0.02 to 0.05) in dry environments, and are typically applied by sputter deposition, pulsed laser ablation, evaporation or chemical vapor deposition, which are essentially either line-of-sight or high temperature processes. With these techniques it is difficult to coat surfaces shadowed from the target, or uniformly coat sidewalls of three-dimensional or high aspect ratio structures. For applications such as micromechanical (MEMS) devices, where dimensions and separation tolerances are small, and aspect ratios are large, these traditional deposition techniques are inadequate. Atomic layer deposition (ALD) is a chemical vapor deposition technique that could overcome many of these problems by using sequential introduction of gaseous precursors and selective surface chemistry to achieve controlled growth at lower temperatures, but the chemistry needed to grow transition metal dichalcogenide films by ALD is not known.


Materials ◽  
2016 ◽  
Vol 9 (12) ◽  
pp. 1007 ◽  
Author(s):  
Xin Meng ◽  
Young-Chul Byun ◽  
Harrison Kim ◽  
Joy Lee ◽  
Antonio Lucero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document