Photochemical Water Oxidation Using {PMo12O40@Mo72Fe30}n Based Soft Oxometalate

2017 ◽  
Vol 05 (01) ◽  
pp. 1750001 ◽  
Author(s):  
Santu Das ◽  
Soumyajit Roy

Finding an alternative energy resource which can produce clean energy at a low cost is one of the major concerns of our times. The conversion of light energy into chemical energy is one key step forward in the direction. With that end in view photochemical water oxidation to produce oxygen plays a crucial role. In the present paper we have synthesized a soft oxometalate {PMo[Formula: see text]O[Formula: see text]@Mo[Formula: see text]Fe[Formula: see text]}n(1) from its well-known precursor polyoxometalate constituent [Muller et al., Chem. Commun. 1, 657 (2001)]. It is known that in the matter of catalysis, high surface area, possibility of heterogenization, recoverability makes soft oxometalates (SOMs) attractive as catalytic materials. Here we exploit such advantages of SOMs. The SOM based material acts as an active catalyst for photochemical water oxidation reaction with a maximum turnover number of 20256 and turnover frequency of 24.11[Formula: see text]min[Formula: see text]. The catalyst material is stable under photochemical reaction conditions and therefore can be reused for multiple photo catalytic water oxidation reaction cycles.

2015 ◽  
Vol 44 (25) ◽  
pp. 11592-11600 ◽  
Author(s):  
Li-Jing Zhou ◽  
Xiaoxi Huang ◽  
Hui Chen ◽  
Panpan Jin ◽  
Guo-Dong Li ◽  
...  

A high surface area flower-like Ni–Fe LDH was shown to be a water oxidation catalyst.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20601-20611
Author(s):  
Md. Mijanur Rahman ◽  
Kenta Inaba ◽  
Garavdorj Batnyagt ◽  
Masato Saikawa ◽  
Yoshiki Kato ◽  
...  

Herein, we demonstrated that carbon-supported platinum (Pt/C) is a low-cost and high-performance electrocatalyst for polymer electrolyte fuel cells (PEFCs).


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 657
Author(s):  
Geul Han Kim ◽  
Yoo Sei Park ◽  
Juchan Yang ◽  
Myeong Je Jang ◽  
Jaehoon Jeong ◽  
...  

Developing high performance, highly stable, and low-cost electrodes for the oxygen evolution reaction (OER) is challenging in water electrolysis technology. However, Ir- and Ru-based OER catalysts with high OER efficiency are difficult to commercialize as precious metal-based catalysts. Therefore, the study of OER catalysts, which are replaced by non-precious metals and have high activity and stability, are necessary. In this study, a copper–cobalt oxide nanosheet (CCO) electrode was synthesized by the electrodeposition of copper–cobalt hydroxide (CCOH) on Ni foam followed by annealing. The CCOH was annealed at various temperatures, and the structure changed to that of CCO at temperatures above 250 °C. In addition, it was observed that the nanosheets agglomerated when annealed at 300 °C. The CCO electrode annealed at 250 °C had a high surface area and efficient electron conduction pathways as a result of the direct growth on the Ni foam. Thus, the prepared CCO electrode exhibited enhanced OER activity (1.6 V at 261 mA/cm2) compared to those of CCOH (1.6 V at 144 mA/cm2), Co3O4 (1.6 V at 39 mA/cm2), and commercial IrO2 (1.6 V at 14 mA/cm2) electrodes. The optimized catalyst also showed high activity and stability under high pH conditions, demonstrating its potential as a low cost, highly efficient OER electrode material.


2021 ◽  
Vol 43 (1) ◽  
pp. 1-1
Author(s):  
Guo Yingwei Guo Yingwei ◽  
Chen Xuedan Chen Xuedan ◽  
Yan Shiting Yan Shiting ◽  
Zhang Zhengliang Zhang Zhengliang ◽  
Chen Yuqin Chen Yuqin ◽  
...  

A series of silica gel (SG) supported metal ionic liquid catalysts (x[Bmim]Cl-CrCl3/SG) were synthesized and exploited for the esterification of palmitic acid (PA) with methanol (ML) to produce biodiesel efficiently. The 10%[Bmim]Cl-CrCl3/SG catalyst with high surface area and desirable acidity exhibited the best catalytic performance and reusability after six consecutive running cycles. Based on the response surface analysis, the optimal reaction conditions were obtained as follows: methanol/acid mole ratio = 11:1 mol/mol, catalyst amount = 5.3 wt%, reaction time = 65 min, as well as reaction temperature = 373 K, reaching to a biodiesel yield of 96.1%. Further kinetic studies demonstrated that the esterification of PA with ML obeyed 1.41 order kinetics for acid concentration with the activation energy of 16.88 kJ/mol


2016 ◽  
Vol 75 (2) ◽  
pp. 350-357
Author(s):  
Graham Dawson ◽  
Wei Chen ◽  
Luhua Lu ◽  
Kai Dai

The adsorption properties of two nanomorphologies of trititanate, nanotubes (TiNT) and plates (TiNP), prepared by the hydrothermal reaction of concentrated NaOH with different phases of TiO2, were examined. It was found that the capacity for both morphologies towards methylene blue (MB), an ideal pollutant, was extremely high, with the TiNP having a capacity of 130 mg/g, higher than the TiNT, whose capacity was 120 mg/g at 10 mg/L MB concentration. At capacity, the well-dispersed powders deposit on the floor of the reaction vessel. The two morphologies had very different structural and adsorption properties. TiNT with high surface area and pore volume exhibited exothermic monolayer adsorption of MB. TiNP with low surface area and pore volume yielded a higher adsorption capacity through endothermic multilayer adsorption governed by pore diffusion. TiNP exhibited a higher negative surface charge of −23 mV, compared to −12 mV for TiNT. The adsorption process appears to be an electrostatic interaction, with the cationic dye attracted more strongly to the nanoplates, resulting in a higher adsorption capacity and different adsorption modes. We believe this simple, low cost production of high capacity nanostructured adsorbent material has potential uses in wastewater treatment.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1338
Author(s):  
Marek Gliński ◽  
Ewa M. Iwanek (nee Wilczkowska) ◽  
Urszula Ulkowska ◽  
Agnieszka Czajka ◽  
Zbigniew Kaszkur

The first aim of the research was to synthesize a pure Upsalite, which is an amorphous form of MgCO3, by modifying a procedure described in the literature, so that it would be the precursor of a high-surface, amorphous magnesium oxide. The results indicate that within the studied reaction conditions, the type of alcohol used as the reactant has the most pronounced effect on the yield of reaction. From the two alcohols that led to the highest yield of Upsalite, methanol gave a substantially larger surface area (794 vs. 191 m2 g−1). The optimized synthesis conditions of Upsalite were used to obtain MgO via thermolysis, whose activity in the transfer hydrogenation reaction (THR) from ethanol, 2-propanol and 2-pentanol to various carbonyl compounds was determined. The optimal conditions for the thermolysis were as follows: vacuum, T = 673 K as the final temperature, and a heating rate of 2 deg min−1. The high-surface, amorphous magnesia (SBET = 488 m2 g−1) was found to be a very selective catalyst to 4-t-butylcyclohexanone in THR, which led to a diastereoselectivity of over 94% to the E-isomer of 4-t-butylcyclohexanol for more than 3 h, with conversions of up to 97% with either 2-propanol or 2-pentanol as the hydrogen donor. In the case of acrolein and 2-n-propylacrolein being used as the hydrogen acceptors, the unsaturated alcohol (UOL) was the main product of the reaction, with higher UOL yields noted for ethanol than 2-propanol.


2016 ◽  
Vol 4 (43) ◽  
pp. 17129-17137 ◽  
Author(s):  
Sanpei Zhang ◽  
Zhaoyin Wen ◽  
Yang Lu ◽  
Xiangwei Wu ◽  
Jianhua Yang

We demonstrate a low-cost and facile strategy to synthesize mixed-valent MnOxspheres constructed from nanocrystals (~5 nm), containing MnII, MnIII, and MnIVspecies. Such highly active mixed-valent MnOxspheres with high surface area greatly improve the performance of Li–O2batteries.


2013 ◽  
Vol 67 (9) ◽  
pp. 2117-2123
Author(s):  
N. J. Boyle ◽  
G. M. Evans

The effect of using small-scale, high surface area, nanoparticles to supplement polymer-conditioned wastewater sludge dewatering was investigated. Aerobically digested sludge and waste activated sludge sourced from the Hunter Valley, NSW, Australia, were tested with titanium dioxide nanoparticles. The sludge samples were dosed with the nanoparticles in an attempt to adsorb a component of the charged biopolymer surfactants present naturally in sludge. The sludge was conditioned with a cationic polymer. The dewatering characteristics were assessed by measuring the specific resistance to filtration through a modified time-to-filter testing apparatus. The solids content of the dosed samples was determined by a mass balance and compared to the original solids content in the activated sludge. Test results indicated that nanoparticle addition modified the structure of the sludge and provided benefits in terms of the dewatering rate. The samples dosed with nanoparticles exhibited faster water removal, indicating a more permeable filter cake and hence more permeable sludge. A concentration of 2–4% nanoparticles was required to achieve a noticeable benefit. As a comparison, the sludge samples were also tested with a larger particle size, powdered activated carbon (PAC). It was found that the PAC did provide some minor benefits to sludge dewatering but was outperformed by the nanoparticles. The solids content of the final sludge was increased by a maximum of up to 0.6%. The impact of the order sequence of particles and polymer was also investigated. It was found that nanoparticles added before polymer addition provided the best dewatering performance. This outcome was consistent with current theories and previous research through the literature. An economic analysis was undertaken to confirm the viability of the technology for implementation at a full-scale plant. It was found that, currently, this technology is unlikely to be favourable unless the nanoparticles can be sourced for a low cost.


2021 ◽  
Vol 43 (1) ◽  
pp. 1-1
Author(s):  
Guo Yingwei Guo Yingwei ◽  
Chen Xuedan Chen Xuedan ◽  
Yan Shiting Yan Shiting ◽  
Zhang Zhengliang Zhang Zhengliang ◽  
Chen Yuqin Chen Yuqin ◽  
...  

A series of silica gel (SG) supported metal ionic liquid catalysts (x[Bmim]Cl-CrCl3/SG) were synthesized and exploited for the esterification of palmitic acid (PA) with methanol (ML) to produce biodiesel efficiently. The 10%[Bmim]Cl-CrCl3/SG catalyst with high surface area and desirable acidity exhibited the best catalytic performance and reusability after six consecutive running cycles. Based on the response surface analysis, the optimal reaction conditions were obtained as follows: methanol/acid mole ratio = 11:1 mol/mol, catalyst amount = 5.3 wt%, reaction time = 65 min, as well as reaction temperature = 373 K, reaching to a biodiesel yield of 96.1%. Further kinetic studies demonstrated that the esterification of PA with ML obeyed 1.41 order kinetics for acid concentration with the activation energy of 16.88 kJ/mol


Sign in / Sign up

Export Citation Format

Share Document