Diamond Grain Growth on Cu Substrate

1993 ◽  
Vol 32 (Part 2, No. 11B) ◽  
pp. L1681-L1683 ◽  
Author(s):  
Shin-ichi Ojika ◽  
Satoshi Yamashita ◽  
Kazuhiro Kataoka ◽  
Takefumi Ishikura
2020 ◽  
Vol 76 (10) ◽  
pp. 923-927 ◽  
Author(s):  
Jungtae Nam ◽  
Imbok Lee ◽  
Dong Yun Lee ◽  
Minjae Kim ◽  
Keun Soo Kim

1995 ◽  
Vol 391 ◽  
Author(s):  
E. M. Zielinski ◽  
R. P. Vinci ◽  
J. C. Bravman

AbstractSputtered Cu films on Si, Al and Cu substrates were thermally cycled to 300 °C at a rate of 6 °/min, which induced an applied thermal strain that was compressive, tensile and zero, respectively. Microstructural characterization of the annealed films revealed abnormal (100) grain growth in the films on Al and Si, but not Cu substrates. In addition, symmetric x-ray diffraction scans demonstrated that the films in which abnormal grain growth was observed were primarily (100) in orientation. In contrast, the Cu film on a Cu substrate was largely randomly oriented after cycling, with a small degree of (111) preferred orientation. These results are consistent with a strain energy driving force for abnormal grain growth, which predicts that the growth should occur in compression, as on the Si substrate, or in tension, as on the Al substrate, but not when there is no applied thermal strain, as on the Cu substrate.


Author(s):  
B. B. Rath ◽  
J. E. O'Neal ◽  
R. J. Lederich

Addition of small amounts of erbium has a profound effect on recrystallization and grain growth in titanium. Erbium, because of its negligible solubility in titanium, precipitates in the titanium matrix as a finely dispersed second phase. The presence of this phase, depending on its average size, distribution, and volume fraction in titanium, strongly inhibits the migration of grain boundaries during recrystallization and grain growth, and thus produces ultimate grains of sub-micrometer dimensions. A systematic investigation has been conducted to study the isothermal grain growth in electrolytically pure titanium and titanium-erbium alloys (Er concentration ranging from 0-0.3 at.%) over the temperature range of 450 to 850°C by electron microscopy.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


2003 ◽  
Vol 764 ◽  
Author(s):  
Hiroyuki Togawa ◽  
Hideki Ichinose

AbstractAtomic resolution high-voltage transmission electron microscopy and electron energy loss spectroscopy were performed on grain boundaries of boron-doped diamond, cooperated with the ab-initio calculation. Segregated boron in the {112}∑3 boundary was caught by the EELS spectra. The change in atomic structure of the segregated boundary was successfully observed from the image by ARHVTEM. Based on the ARHVTEM image, a segregted structure model was proposed.


2013 ◽  
Vol 58 (2) ◽  
pp. 529-533 ◽  
Author(s):  
R. Koleňák ◽  
M. Martinkovič ◽  
M. Koleňáková

The work is devoted to the study of shear strength of soldered joints fabricated by use of high-temperature solders of types Bi-11Ag, Au-20Sn, Sn-5Sb, Zn-4Al, Pb-5Sn, and Pb-10Sn. The shear strength was determined on metallic substrates made of Cu, Ni, and Ag. The strength of joints fabricated by use of flux and that of joints fabricated by use of ultrasonic activation without flux was compared. The obtained results have shown that in case of soldering by use of ultrasound (UT), higher shear strength of soldered joints was achieved with most solders. The highest shear strength by use of UT was achieved with an Au-20Sn joint fabricated on copper, namely up to 195 MPa. The lowest average values were achieved with Pb-based solders (Pb-5Sn and Pb-10Sn). The shear strength values of these solders used on Cu substrate varied from 24 to 27 MPa. DSC analysis was performed to determine the melting interval of lead-free solders.


Sign in / Sign up

Export Citation Format

Share Document