Layer-by-Layer Growth of AlAs Buffer Layer for GaAs on Si at Low Temperature by Atomic Layer Epitaxy

1993 ◽  
Vol 32 (Part 2, No. 2B) ◽  
pp. L236-L238 ◽  
Author(s):  
Kuninori Kitahara ◽  
Nobuyuki Ohtsuka ◽  
Toshihiko Ashino ◽  
Masashi Ozeki ◽  
Kazuo Nakajima
1995 ◽  
Vol 387 ◽  
Author(s):  
J. L. Hoyt ◽  
P. Kuo ◽  
K. Rim ◽  
J. J. Welser ◽  
R. M. Emerson ◽  
...  

AbstractMaterial and device challenges for Rapid Thermal Processing (RTP) of heterostructures are discussed, focusing on RTP-based epitaxy in the Si/Si1−xGex system. While RTP-based heteroepitaxy offers enhanced processing flexibility, it also poses significant challenges for temperature measurement and control. Several examples of Si/Si1−xGex device structures are discussed from the point of view of the sensitivity of device parameters to variations in layer thickness and composition. The measured growth kinetics for Si and Si1−xGex are then used to estimate growth temperature tolerances for these structures. Demanding applications are expected to require temperature control and uniformity to within 0.5°C.Future research challenges include the fabrication of structures with monolayer thickness control using self-limited growth techniques. Atomic layer epitaxy (ALE) is a well-known example of such a growth technique. In ALE, the wafer is cyclically exposed to different reactants, to achieve layer-by-layer growth. An RTP-based atomic layer epitaxy process, and its application to the growth of CdTe films, is briefly discussed. The extension to Column IV alloys follows readily. The RTP-based process enables self-limited growth for precursor combinations for which isothermal ALE is not feasible.


1990 ◽  
Author(s):  
Shigeo FUJITA ◽  
Yi-hong WU ◽  
Yasunori MIYAZAKI ◽  
Takashi TOYODA ◽  
Yoichi KAWAKAMI ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Huan-Yu Shih ◽  
Wei-Hao Lee ◽  
Wei-Chung Kao ◽  
Yung-Chuan Chuang ◽  
Ray-Ming Lin ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 291
Author(s):  
Alberto Perrotta ◽  
Julian Pilz ◽  
Roland Resel ◽  
Oliver Werzer ◽  
Anna Maria Coclite

Direct plasma enhanced-atomic layer deposition (PE-ALD) is adopted for the growth of ZnO on c-Si with native oxide at room temperature. The initial stages of growth both in terms of thickness evolution and crystallization onset are followed ex-situ by a combination of spectroscopic ellipsometry and X-ray based techniques (diffraction, reflectivity, and fluorescence). Differently from the growth mode usually reported for thermal ALD ZnO (i.e., substrate-inhibited island growth), the effect of plasma surface activation resulted in a substrate-enhanced island growth. A transient region of accelerated island formation was found within the first 2 nm of deposition, resulting in the growth of amorphous ZnO as witnessed with grazing incidence X-ray diffraction. After the islands coalesced and a continuous layer formed, the first crystallites were found to grow, starting the layer-by-layer growth mode. High-temperature ALD ZnO layers were also investigated in terms of crystallization onset, showing that layers are amorphous up to a thickness of 3 nm, irrespective of the deposition temperature and growth orientation.


1991 ◽  
Vol 222 ◽  
Author(s):  
Masaki Kanai ◽  
Tomoji Kawai ◽  
Takuya Matsumoto ◽  
Shichio Kawai

ABSTRACTThin films of (Ca,Sr)CuO2 and Bi2Sr2Can-1CunO2n+4 are formed by laser molecular beam epitaxy with in-situ reflection high energy electron diffraction observation. The diffraction pattern shows that these materials are formed with layer-by-layer growth. The change of the diffraction intensity as well as the analysis of the total diffraction pattern makes It possible to control the grown of the atomic layer or the unit-cell layer.


2011 ◽  
Author(s):  
Masaki Murata ◽  
Yuji Tanaka ◽  
Yasutaka Sanjo ◽  
Hiroshi Kumagai ◽  
Tsutomu Shinagawa ◽  
...  

2003 ◽  
Vol 247 (3-4) ◽  
pp. 245-250 ◽  
Author(s):  
Hisashi Murakami ◽  
Yoshinao Kumagai ◽  
Hisashi Seki ◽  
Akinori Koukitu

1990 ◽  
Vol 106 (2-3) ◽  
pp. 421-425 ◽  
Author(s):  
Norio Hayafuji ◽  
Motoharu Miyashita ◽  
Hisao Kumabe ◽  
Toshio Murotani

1992 ◽  
Vol 275 ◽  
Author(s):  
K. Yoshikawa ◽  
N. Sasaki

ABSTRACTUsing in-situ reflection high-energy electron diffraction (RHEED), we studied the growth of Bi-Sr-Ca-Cu-O (BSCCO) thin films prepared by reactive evaporation using layer-by-layer deposition. Bi2Sr2CaCu2Ox(2212) tends to be grown three-dimensionally if it is grown directly on (100) SrTiO3, in contrast to Bi2Sr2CuOx(2201) which is easily grown two-dimensionally on SrTiO3. Two-dimensional 2212 growth can be realized, if a buffer layer of 2201 is deposited on (100) SrTiO3 and growth interruption is utilized after SrO layer deposition. A buffer layer of only two 2201 unit cells improved the surface crystallinity of the substrate for the epitaxial growth of 2212. Growth interruption for two minutes after the 2nd SrO layer in the half unit cell is necessary to keep two-dimensional layered growth. The resulting Tc (zero) is 76 K and Jc (at 4.2 K) is 1.5 × 106 (A/cm2) with these epitaxial films.


2003 ◽  
Vol 83 (14) ◽  
pp. 2784-2786 ◽  
Author(s):  
A. Tsukazaki ◽  
A. Ohtomo ◽  
S. Yoshida ◽  
M. Kawasaki ◽  
C. H. Chia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document