Thermally Activated Motion of a Screw Dislocation Overcoming the Peierls Potential for Prismatic Slip in an hcp Lattice

1998 ◽  
Vol 37 (Part 1, No. 7A) ◽  
pp. 4086-4091 ◽  
Author(s):  
Keiichi Edagawa ◽  
Takayoshi Suzuki ◽  
Shin Takeuchi
Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Chao Fang ◽  
Jing Zhang ◽  
Ying Huang ◽  
Jianhao Chen

The interaction between interstitial oxygen atoms and <a>-type screw dislocations was investigated via first-principles calculations to elucidate the effect of oxygen solutes on the deformation behaviors of Mg. The results show that repulsive interactions exist between basal screw dislocation cores and oxygen atoms, which would enable the full basal dislocation to bypass the oxygen atoms in the dislocation glide plane through the cross-slip process. This repulsion also increases the resistance to the motion of dissociated basal dislocations. Moreover, the energy of prismatic <a>-type screw dislocation cores is reduced by the presence of oxygen, which would stabilize the screw dislocation core on the prismatic plane, accordingly facilitating the prismatic slip. This information can complement the fundamental knowledge of alloying Mg using interstitial solutes.


Author(s):  
Mohammed A. Shabana ◽  
Jishnu J. Bhattacharyya ◽  
Marek Niewczas ◽  
Sean R. Agnew

2008 ◽  
Vol 139 ◽  
pp. 59-64 ◽  
Author(s):  
X.Y. Liu ◽  
S.B. Biner

Constant strain rate molecular dynamics simulations under the modified boundary conditions were performed to elucidate the interaction processes between the kink motion of screw dislocation and the glissile self-interstitial atom cluster loops in bcc Fe by using an EAM potential for Fe fitted to ab initio forces. The junction formation and the helical dislocation mechanisms were identified as two possible interaction processes. In the junction mechanism, the initial Burgers vector 1/2<111> of the cluster loop was transformed into <100>. In the helical dislocation mechanism first the absorption, followed by the formation of the helical dislocation and the emission of the cluster loop through Hirsch mechanism was observed. Substantial hardening was seen as result of the interactions. The stress-strain plots obtained for different loop sizes, temperature and strain rates were used to estimate the strengthening factors.


1967 ◽  
Vol 45 (2) ◽  
pp. 983-1016 ◽  
Author(s):  
Pierre Guyot ◽  
John E. Dorn

A thorough review is made of the application of the Peierls model to the macroscopic plastic deformation of ionic crystals, metals, alloys, and covalently bonded crystals. The effects of the shape of the Peierls hill, kink–kink energies, and the frequency terms on the stress–temperature and activation volume–stress relationships are extended and discussed. Theory is compared with experimental results, giving special emphasis to recent advances. Single-crystal data for [Formula: see text] {110} thermally activated slip in Ta and Mo at low temperatures agree well with the dictates of the Peierls mechanism. Deformation characteristics of polycrystalline Fe alloys containing either 2 wt.% Mn or 11 at.% Mo agree with expectations based on the Peierls mechanism only at temperatures below about 200 °K. At higher temperatures, the effective stress decreases more slowly and the activation volume increases more rapidly with increasing temperature than can be accounted for by the Peierls mechanism. Over this higher temperature range, however, the experimental data are in good agreement with Escaig's mechanism based on the recombination of dissociated screw dislocations. It is also shown that low-temperature [Formula: see text] {123} slip in AgMg, prismatic slip in Ag plus 33 at.% Al, and in Mg plus 6–12 at.% Li occurs by the Peierls mechanism.


Author(s):  
E. L. Thomas ◽  
S. L. Sass

In polyethylene single crystals pairs of black and white lines spaced 700-3,000Å apart, parallel to the [100] and [010] directions, have been identified as microsector boundaries. A microsector is formed when the plane of chain folding changes over a small distance within a polymer crystal. In order for the different types of folds to accommodate at the boundary between the 2 fold domains, a staggering along the chain direction and a rotation of the chains in the plane of the boundary occurs. The black-white contrast from a microsector boundary can be explained in terms of these chain rotations. We demonstrate that microsectors can terminate within the crystal and interpret the observed terminal strain contrast in terms of a screw dislocation dipole model.


Author(s):  
J. Cadoz ◽  
J. Castaing ◽  
J. Philibert

Plastic deformation of alumina has been much studied; basal slip occurs and dislocation structures have been investigated by transmission electron microscopy (T.E.M.) (1). Non basal slip has been observed (2); the prismatic glide system <1010> {1210} has been obtained by compression tests between 1400°C and 1800°C (3). Dislocations with <0110> burgers vector were identified using a 100 kV microscope(4).We describe the dislocation structures after prismatic slip, using high voltage T.E.M. which gives much information.Compression tests were performed at constant strainrate (∿10-4s-1); the maximum deformation reached was 0.03. Thin sections were cut from specimens deformed at 1450°C, either parallel to the glide plane or perpendicular to the glide direction. After mechanical thinning, foils were produced by ion bombardment. Details on experimental techniques can be obtained through reference (3).


2000 ◽  
Vol 80 (12) ◽  
pp. 2813-2825
Author(s):  
O. N. Senkov, J. J. Jonas, F. H. Froes
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document